scholarly journals Analysis of Coupled Thermal and Electromagnetic Processes in Linear Induction Motors Based on a Three-Dimensional Thermal Model

Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 114
Author(s):  
Victor Goman ◽  
Vladimir Prakht ◽  
Vladimir Dmitrievskii ◽  
Fedor Sarapulov

The article describes a mathematical model of interconnected electromechanical and thermal processes in a linear induction motor (LIM). Here, we present the structure of the thermal model and provide the calculation formulas of the model. The thermal model consisted of eight control volumes on each tooth pitch of the LIM. Moreover, we also present a model of electromechanical processes and its interaction with the thermal model. The electromechanical model was based on the detailed magnetic and electrical equivalent circuits of the LIM. Model verification was performed using a model based on the finite element method and using experimental data. We also conducted a study focused on the necessity of considering the influence of various features of the thermal processes. We herein discuss the application of the model implemented in the MATLAB/Simulink, which was used to analyze the thermal performance of linear transport and technological induction motors. For the traction single-sided linear induction motor, we determined limits of safe operation by considering the unevenness of heating along the length in two cases: natural cooling and forced cooling. For forced cooling, required values of air flow were determined. For the arc induction motor of the screw press, the influence of various factors (i.e., reduction of the stroke, the use of a soft start, and the use of a forced cooling) on heating was evaluated.

2004 ◽  
Vol 13 (2) ◽  
pp. 146-163 ◽  
Author(s):  
Haruo Noma ◽  
Shunsuke Yoshida ◽  
Yasuyuki Yanagida ◽  
Nobuji Tetsutani

The Proactive Desk is a new digital desk with haptic feedback. The concept of a digital desk was proposed by Wellner in 1991 for the first time. A typical digital desk enables a user to seamlessly handle both digital and physical objects on the desk with a common GUI standard. The user, however, handles them as virtual GUI objects. Our Proactive Desk allows the user to handle both digital and physical objects on a digital desk with a realistic feeling. In the Proactive Desk, two linear induction motors are equipped to generate an omnidirectional translational force on the user's hand or on a physical object on the desk without any mechanical links or wires, thereby preserving the advantages of the digital desk. In this article, we first discuss applications of a digital desk with haptic feedback; then we mention the design and structure of the first trial Proactive Desk, and its performance.


2019 ◽  
Vol 891 ◽  
pp. 253-262
Author(s):  
Sakhon Woothipatanapan ◽  
Poonsri Wannakarn

This article presents the design and construction of a mini magnetic levitation train. The design of the train is based on the theory of 3-phase Linear Induction Motor (LIM). The train consists of two main sections. The first part is the linear induction motor, which is the part that drives the train to move. The second part is the magnetic field winding, which is the part that raises the body of the train to float over the rails. Such train can move forward/backward in the same principle as forward/reverse rotation control of 3-phase induction motors. For that reason, this research controls the forward/backward movement of the train with a magnetic contactor set by using the same circuit as the control of the rotation of the 3-phase induction motor. The designed train can lift 1 mm above the rails and move within a distance of 1.48 m along the length of the rails. The test results showed drive voltage, drive force, average time and drive speed of the train. From the details and results of this article can be used as a guide to create a larger magnetic levitation train, which can be used more effectively.


2021 ◽  
Vol 7 (2) ◽  
pp. 87-96
Author(s):  
Vladimir A. Solomin ◽  
Andrei V. Solomin ◽  
Anastasia A. Chekhova

Background: Development and research of linear traction drives for Maglev transport is an urgent task. Linear induction motors can be used as traction machines for advanced rolling stock. Aim: Study of the starting characteristics of an adjustable traction linear induction motor with variable resistance by a short-circuited winding of the secondary element. Methods: Theoretically, relations were obtained for calculating the traction starting forces of an adjustable linear induction motor with various designs of a short-circuited winding of the secondary element. Results: Based on the obtained ratios, the calculations of the starting traction forces of linear induction motors intended for use in promising modes of transport were performed. Conclusion: The results of calculating the starting traction forces of adjustable linear induction motors make it possible to reasonably select the modes of starting the motor depending on the design of the secondary winding.


2018 ◽  
Vol 4 (3 suppl. 1) ◽  
pp. 351-364
Author(s):  
Vladimir A. Solomin ◽  
Andrei V. Solomin ◽  
Nadezda A. Trubitsina ◽  
Larisa L. Zamchina ◽  
Anastasia A. Chekhova

Abstract. Background: Significant economic growth in many countries of the world can contribute to an increase in the speed of movement of modern and fundamentally new vehicles. This will increase the turnover of goods during the transportation of goods, revive international trade, increase the comfort of passengers and reduce their travel time. Aim: The solution of this problem is the development and wide application of high-speed magnetic-levitation transport (HSMLT) with linear traction engines. It is promising to use linear induction motors (LIM) for the HSMLT drive, which can have various design versions. Linear induction motors come with a longitudinal, transverse and longitudinal-transverse closure of the magnetic flux. LIM inductors can be installed on both high-speed transport crews and in the HSMLT track structure, as it was done in the People’s Republic of China, where express trains on magnetic suspension connect Shanghai with the airport and reliably operate for more than 10 years. The main elements of the inductor of a linear induction motor are a magnetic core (ferromagnetic core) a multiphase (usually three-phase) winding. With the development of high-speed magnetic-levitation transport, the issues of improving the manufacturing technology of various HSMLT devices, including the methods for producing inductors of linear induction motors, will become increasingly relevant. Traditionally, LIM inductors are assembled from pre-manufactured individual parts. Methods: An integral technology for manufacturing inductors of linear induction motors for high-speed magnetic-levitation transport is proposed and considered by the method of spraying materials onto a substrate through replaceable stencils. The new technology eliminates the alternate manufacture of individual assemblies and parts and their subsequent assembly to obtain a finished product. A method for determining the size of stencils for manufacturing one of the inductor variants of a linear induction motor is proposed as an example. Conclusion: Integral manufacturing technology is promising for the creation of high-speed magnetic-levitation transport.


2020 ◽  
Vol 6 (1) ◽  
pp. 120-128
Author(s):  
Anastasia A. Chekhova ◽  
Andrei V. Solomin

Background: Currently, great attention is paid to the problem of increasing the efficiency of transport in cities. The use of urban Maglev transport with linear traction motors will improve the transport infrastructure of megacities. Aim: The use of magnetic-levitation transport with linear induction motors (LIM) is proposed. It is proposed to use traction linear induction motors (LIM) for urban Maglev transport, increasing the safety of a new type of transport. Materials and Methods: In this work, the design of a linear traction induction motor was proposed, which can increase lateral stabilization forces and safety of traffic by performing the lateral parts of the secondary element of a linear induction motor in the form of short-circuited windings. Results: Improving efforts of the lateral stabilization improve crew safety.


Sign in / Sign up

Export Citation Format

Share Document