striatonigral degeneration
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 10)

H-INDEX

30
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Franziska Hopfner ◽  
Anja Katharina Tietz ◽  
Viktoria C. Ruf ◽  
Owen Ross ◽  
Koga Shunsuke ◽  
...  

Multiple System Atrophy is a rare neurodegenerative disease with alpha-synuclein aggregation in glial cytoplasmic inclusions and either predominant olivopontocerebellar atrophy or striatonigral degeneration, leading to dysautonomia, parkinsonism, and cerebellar ataxia. One prior genome-wide association study in mainly clinically diagnosed patients with Multiple System Atrophy failed to identify genetic variants predisposing for the disease. Since the clinical diagnosis of Multiple System Atrophy yields a high rate of misdiagnosis when compared to the neuropathological gold standard, we studied common genetic variation in only autopsy-confirmed cases (N = 731) and controls (N = 2,898). The most strongly disease-associated markers were rs16859966 on chromosome 3 (P = 8.6 * 10-7, odds ratio (OR) = 1.58, [95% confidence interval (CI) = 1.32-1.89]), rs7013955 on chromosome 8 (P = 3.7 * 10-6, OR = 1.8 [1.40-2.31]), and rs116607983 on chromosome 4 (P = 4.0 * 10-6, OR = 2.93 [1.86-4.63]), all of which were supported by at least one additional genotyped and several imputed single nucleotide polymorphisms with P-values below 5 * 10-5. The genes closest to the chromosome 3 locus are ZIC1 and ZIC4 encoding the zinc finger proteins of cerebellum 1 and 4 (ZIC1 and ZIC4). Since mutations of ZIC1 and ZIC4 and paraneoplastic autoantibodies directed against ZIC4 are associated with severe cerebellar dysfunction, we conducted immunohistochemical analyses in brain tissue of the frontal cortex and the cerebellum from 24 Multiple System Atrophy patients. Strong immunohistochemical expression of ZIC4 was detected in a subset of neurons of the dentate nucleus in all healthy controls and in patients with striatonigral degeneration, whereas ZIC4 positive neurons were significantly reduced in patients with olivopontocerebellar atrophy. These findings point to a potential ZIC4-mediated vulnerability of neurons in Multiple System Atrophy.


Author(s):  
Nicole Campese ◽  
Alessandra Fanciulli ◽  
Nadia Stefanova ◽  
Johannes Haybaeck ◽  
Stefan Kiechl ◽  
...  

AbstractMultiple System Atrophy (MSA) is a rare, fatal neurodegenerative disorder. Its etiology and exact pathogenesis still remain poorly understood and currently no disease-modifying therapy is available to halt or slow down this detrimental neurodegenerative process. Hallmarks of the disease are α-synuclein rich glial cytoplasmic inclusions (GCIs). Neuropathologically, various degrees of striatonigral degeneration (SND) and olivopontocerebellar atrophy (OPCA) can be observed. Since the original descriptions of this multifaceted disorder, several steps forward have been made to clarify its neuropathological hallmarks and key pathophysiological mechanisms. The Austrian neuropathologist Kurt Jellinger substantially contributed to the understanding of the underlying neuropathology of this disease, to its standardized assessment and to a broad systematical clinic-pathological correlation. On the occasion of his 90th birthday, we reviewed the current state of the art in the field of MSA neuropathology, highlighting Prof. Jellinger’s substantial contribution.


2019 ◽  
Vol 8 (2) ◽  
Author(s):  
Shuang Liao ◽  
Tingting Chen ◽  
Ying Dai ◽  
Yanqin Wang ◽  
Fangrui Wu ◽  
...  

2019 ◽  
Vol 64 (12) ◽  
pp. 1237-1242 ◽  
Author(s):  
Parneet Kaur ◽  
Gandham SriLakshmi Bhavani ◽  
Arun Raj ◽  
Katta Mohan Girisha ◽  
Anju Shukla

PLoS ONE ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. e0218130
Author(s):  
Christine Kaindlstorfer ◽  
Nadia Stefanova ◽  
Joanna Garcia ◽  
Florian Krismer ◽  
Máté Döbrössy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document