neutron diffraction experiment
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 5)

H-INDEX

12
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Luke Sadergaski ◽  
Sam Schrell ◽  
Kaara Patton ◽  
Matthias Frontzek

2020 ◽  
Vol 76 (11) ◽  
pp. 1050-1056
Author(s):  
Katsuhiro Kusaka ◽  
Takeshi Yokoyama ◽  
Taro Yamada ◽  
Naomine Yano ◽  
Ichiro Tanaka ◽  
...  

Transthyretin (TTR) is one of more than 30 amyloidogenic proteins, and the amyloid fibrils found in patients afflicted with ATTR amyloidosis are composed of this protein. Wild-type TTR amyloids accumulate in the heart in senile systemic amyloidosis (SSA). ATTR amyloidosis occurs at a much younger age than SSA, and the affected individuals carry a TTR mutant. The naturally occurring amyloidogenic Y116S TTR variant forms more amyloid fibrils than wild-type TTR. Thus, the Y116S mutation reduces the stability of the TTR structure. A neutron diffraction experiment on Y116S TTR was performed to elucidate the mechanism of the changes in structural stability between Y116S variant and wild-type TTR through structural comparison. Large crystals of the Y116S variant were grown under optimal crystallization conditions, and a single 2.4 mm3 crystal was ultimately obtained. This crystal was subjected to time-of-flight (TOF) neutron diffraction using the IBARAKI biological crystal diffractometer (iBIX) at the Japan Proton Accelerator Research Complex, Tokai, Japan (J-PARC). A full data set for neutron structure analysis was obtained in 14 days at an operational accelerator power of 500 kW. A new integration method was developed and showed improved data statistics; the new method was applied to the reduction of the TOF diffraction data from the Y116S variant. Data reduction was completed and the integrated intensities of the Bragg reflections were obtained at 1.9 Å resolution for structure refinement. Moreover, X-ray diffraction data at 1.4 Å resolution were obtained for joint neutron–X-ray refinement.


2020 ◽  
Vol 102 (9) ◽  
Author(s):  
Noriki Terada ◽  
Kensei Terashima ◽  
Pedro Baptista de Castro ◽  
Claire V. Colin ◽  
Hiroaki Mamiya ◽  
...  

2014 ◽  
Vol 70 (5) ◽  
pp. 483-498 ◽  
Author(s):  
Magdalena Woińska ◽  
Dylan Jayatilaka ◽  
Mark A. Spackman ◽  
Alison J. Edwards ◽  
Paulina M. Dominiak ◽  
...  

High-resolution low-temperature synchrotron X-ray diffraction data of the salt L-phenylalaninium hydrogen maleate are used to test the new automated iterative Hirshfeld atom refinement (HAR) procedure for the modelling of strong hydrogen bonds. The HAR models used present the first examples ofZ′ > 1 treatments in the framework of wavefunction-based refinement methods. L-Phenylalaninium hydrogen maleate exhibits several hydrogen bonds in its crystal structure, of which the shortest and the most challenging to model is the O—H...O intramolecular hydrogen bond present in the hydrogen maleate anion (O...O distance is about 2.41 Å). In particular, the reconstruction of the electron density in the hydrogen maleate moiety and the determination of hydrogen-atom properties [positions, bond distances and anisotropic displacement parameters (ADPs)] are the focus of the study. For comparison to the HAR results, different spherical (independent atom model, IAM) and aspherical (free multipole model, MM; transferable aspherical atom model, TAAM) X-ray refinement techniques as well as results from a low-temperature neutron-diffraction experiment are employed. Hydrogen-atom ADPs are furthermore compared to those derived from a TLS/rigid-body (SHADE) treatment of the X-ray structures. The reference neutron-diffraction experiment reveals a truly symmetric hydrogen bond in the hydrogen maleate anion. Only with HAR is it possible to freely refine hydrogen-atom positions and ADPs from the X-ray data, which leads to the best electron-density model and the closest agreement with the structural parameters derived from the neutron-diffraction experiment,e.g.the symmetric hydrogen position can be reproduced. The multipole-based refinement techniques (MM and TAAM) yield slightly asymmetric positions, whereas the IAM yields a significantly asymmetric position.


Author(s):  
Takeshi Yokoyama ◽  
Andreas Ostermann ◽  
Mineyuki Mizuguchi ◽  
Nobuo Niimura ◽  
Tobias E. Schrader ◽  
...  

Nitrogen-containing bisphosphonates (N-BPs), such as risedronate and zoledronate, are currently used as a clinical drug for bone-resorption diseases and are potent inhibitors of farnesyl pyrophosphate synthase (FPPS). X-ray crystallographic analyses of FPPS with N-BPs have revealed that N-BPs bind to FPPS with three magnesium ions and several water molecules. To understand the structural characteristics of N-BPs bound to FPPS, including H atoms and hydration by water, neutron diffraction studies were initiated using BIODIFF at the Heinz Maier-Leibnitz Zentrum (MLZ). FPPS–risedronate complex crystals of approximate dimensions 2.8 × 2.5 × 1.5 mm (∼3.5 mm3) were obtained by repeated macro-seeding. Monochromatic neutron diffraction data were collected to 2.4 Å resolution with 98.4% overall completeness. Here, the first successful neutron data collection from FPPS in complex with N-BPs is reported.


2013 ◽  
Vol 28 (S2) ◽  
pp. S351-S359 ◽  
Author(s):  
P. Mikula ◽  
M. Vrána ◽  
J. Šaroun ◽  
B.S. Seong ◽  
W. Woo

Recent results of focusing and reflectivity properties of the dispersive double-bent-crystal monochromator have shown that it could be succesfully used in high resolution neutron diffraction experiment. By using a standard polycrystalline sample of α-Fe, the resolution of the diffraction performance in the vicinity of the scattering angle 2θS = 90o for the neutron wavelength λ= 0.162 nm was tested in detail. It has been found that for thin (1.3 mm) bent second crystal the angular resolution represented by FWHM of diffraction profiles was 1x10−3 rad for 211 and 200 reflections and about 3x10−3 rad for 220 reflection.


Sign in / Sign up

Export Citation Format

Share Document