lorenz number
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 12)

H-INDEX

20
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4477
Author(s):  
Hojoon Yi ◽  
Jaeuk Bahng ◽  
Sehwan Park ◽  
Dang Xuan Dang ◽  
Wonkil Sakong ◽  
...  

The 1D wire TaS3 exhibits metallic behavior at room temperature but changes into a semiconductor below the Peierls transition temperature (Tp), near 210 K. Using the 3ω method, we measured the thermal conductivity κ of TaS3 as a function of temperature. Electrons dominate the heat conduction of a metal. The Wiedemann–Franz law states that the thermal conductivity κ of a metal is proportional to the electrical conductivity σ with a proportional coefficient of L0, known as the Lorenz number—that is, κ=σLoT. Our characterization of the thermal conductivity of metallic TaS3 reveals that, at a given temperature T, the thermal conductivity κ is much higher than the value estimated in the Wiedemann–Franz (W-F) law. The thermal conductivity of metallic TaS3 was approximately 12 times larger than predicted by W-F law, implying L=12L0. This result implies the possibility of an existing heat conduction path that the Sommerfeld theory cannot account for.


2021 ◽  
Vol 59 (6) ◽  
pp. 422-429
Author(s):  
Ji-Hee Pi ◽  
Go-Eun Lee, ◽  
Il-Ho Kim

Permingeatites Cu3Sb1−yGeySe4 (0 ≤ y ≤ 0.14) were synthesized by mechanical alloying and hot pressing. The charge-transport parameters (Hall coefficient, carrier concentration, mobility, and Lorenz number) and thermoelectric properties (electrical conductivity, Seebeck coefficient, power factor, thermal conductivity, and figure of merit) were examined with respect to the Ge doping level. A single permingeatite phase with a tetragonal structure was obtained without subsequent heat treatment, but a small amount of the secondary phase Cu2GeSe3 was found for the specimens with y ≥ 0.08. All hot-pressed compacts exhibited a relative density of 97.5%–98.3%. The lattice constants of the a-axis and c-axis were decreased by the substitution of Ge at the Sb sites. As the Ge content increased, the carrier concentration increased from 5.2 × 1018 to 1.1 × 1020 cm−3, but the mobility decreased from 92 to 25 cm2·V−1·s−1. The Lorenz number of the undoped Cu3SbSe4 implied a non-degenerate semiconductor behavior, ranging from (1.57–1.56) × 10−8 V2·K−2 at 323–623 K. The thermoelectric figure of merit was 0.39 at 623 K, resulting from a power factor of 0.49 mW·m−1·K−2 and a thermal conductivity of 0.76 W·m−1·K−1. However, the Lorenz numbers of the Gedoped specimens indicated degenerate semiconductor characteristics, increasing to (1.63–1.94) × 10−8 V2·K−2 at 323–623 K. The highest thermoelectric figure of merit of 0.65 was at 623 K for Cu3Sb0.86Ge0.14Se4, resulting from the significantly improved power factor of 0.93 mW·m−1·K−2 and the thermal conductivity of 0.89W·m−1·K−1. As a result, the thermoelectric properties were remarkably enhanced by doping Ge into the Sb sites of the permingeatite.


2020 ◽  
Vol 117 (22) ◽  
pp. 223103
Author(s):  
Parijat Sengupta ◽  
Enrico Bellotti
Keyword(s):  

Nano Letters ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 8576-8583
Author(s):  
Yucheng Xiong ◽  
Yang Zhao ◽  
Yi Tao ◽  
Fengju Yao ◽  
Deyu Li ◽  
...  

2020 ◽  
Vol 80 (8) ◽  
Author(s):  
Shubhalaxmi Rath ◽  
Binoy Krishna Patra

Abstract We have studied the effect of strong magnetic field on the charge and thermal transport properties of hot QCD matter at finite chemical potential. For this purpose, we have calculated the electrical conductivity ($$\sigma _\mathrm{el}$$σel) and the thermal conductivity ($$\kappa $$κ) using kinetic theory in the relaxation time approximation, where the interactions are subsumed through the distribution functions within the quasiparticle model at finite temperature, strong magnetic field and finite chemical potential. This study helps to understand the impacts of strong magnetic field and chemical potential on the local equilibrium by the Knudsen number ($$\Omega $$Ω) through $$\kappa $$κ and on the relative behavior between thermal conductivity and electrical conductivity through the Lorenz number (L) in the Wiedemann–Franz law. We have observed that, both $$\sigma _\mathrm{el}$$σel and $$\kappa $$κ get increased in the presence of strong magnetic field, and the additional presence of chemical potential further increases their magnitudes, where $$\sigma _\mathrm{el}$$σel shows decreasing trend with the temperature, opposite to its increasing behavior in the isotropic medium, whereas $$\kappa $$κ increases slowly with the temperature, contrary to its fast increase in the isotropic medium. The variation in $$\kappa $$κ explains the decrease of the Knudsen number with the increase of the temperature. However, in the presence of strong magnetic field and finite chemical potential, $$\Omega $$Ω gets enhanced and approaches unity, thus, the system may move slightly away from the equilibrium state. The Lorenz number ($$\kappa /(\sigma _\mathrm{el} T))$$κ/(σelT)) in the abovementioned regime of strong magnetic field and finite chemical potential shows linear enhancement with the temperature and has smaller magnitude than the isotropic one, thus, it describes the violation of the Wiedemann–Franz law for the hot and dense QCD matter in the presence of a strong magnetic field.


Sign in / Sign up

Export Citation Format

Share Document