sres scenario
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

2016 ◽  
Vol 7 (3) ◽  
pp. 559-582 ◽  
Author(s):  
F. Langerwisch ◽  
A. Walz ◽  
A. Rammig ◽  
B. Tietjen ◽  
K. Thonicke ◽  
...  

Abstract. Any regular interaction of land and river during flooding affects carbon pools within the terrestrial system, riverine carbon and carbon exported from the system. In the Amazon basin carbon fluxes are considerably influenced by annual flooding, during which terrigenous organic material is imported to the river. The Amazon basin therefore represents an excellent example of a tightly coupled terrestrial–riverine system. The processes of generation, conversion and transport of organic carbon in such a coupled terrigenous–riverine system strongly interact and are climate-sensitive, yet their functioning is rarely considered in Earth system models and their response to climate change is still largely unknown. To quantify regional and global carbon budgets and climate change effects on carbon pools and carbon fluxes, it is important to account for the coupling between the land, the river, the ocean and the atmosphere. We developed the RIVerine Carbon Model (RivCM), which is directly coupled to the well-established dynamic vegetation and hydrology model LPJmL, in order to account for this large-scale coupling. We evaluate RivCM with observational data and show that some of the values are reproduced quite well by the model, while we see large deviations for other variables. This is mainly caused by some simplifications we assumed. Our evaluation shows that it is possible to reproduce large-scale carbon transport across a river system but that this involves large uncertainties. Acknowledging these uncertainties, we estimate the potential changes in riverine carbon by applying RivCM for climate forcing from five climate models and three CO2 emission scenarios (Special Report on Emissions Scenarios, SRES). We find that climate change causes a doubling of riverine organic carbon in the southern and western basin while reducing it by 20 % in the eastern and northern parts. In contrast, the amount of riverine inorganic carbon shows a 2- to 3-fold increase in the entire basin, independent of the SRES scenario. The export of carbon to the atmosphere increases as well, with an average of about 30 %. In contrast, changes in future export of organic carbon to the Atlantic Ocean depend on the SRES scenario and are projected to either decrease by about 8.9 % (SRES A1B) or increase by about 9.1 % (SRES A2). Such changes in the terrigenous–riverine system could have local and regional impacts on the carbon budget of the whole Amazon basin and parts of the Atlantic Ocean. Changes in riverine carbon could lead to a shift in the riverine nutrient supply and pH, while changes in the exported carbon to the ocean lead to changes in the supply of organic material that acts as a food source in the Atlantic. On larger scales the increased outgassing of CO2 could turn the Amazon basin from a sink of carbon to a considerable source. Therefore, we propose that the coupling of terrestrial and riverine carbon budgets should be included in subsequent analysis of the future regional carbon budget.


2015 ◽  
Vol 6 (2) ◽  
pp. 1445-1497 ◽  
Author(s):  
F. Langerwisch ◽  
A. Walz ◽  
A. Rammig ◽  
B. Tietjen ◽  
K. Thonicke ◽  
...  

Abstract. Carbon fluxes in the Amazon Basin are considerably influenced by annual flooding during which terrigenous organic material is imported to the river. This regular interaction affects carbon pools within the riverine system, terrestrial carbon, and carbon exported to the ocean and released to the atmosphere. The processes of generation, conversion, and transport of organic carbon in this coupled terrigenous–riverine system strongly interact and are climate-sensitive, yet their response to climate change is still largely unknown. To quantify climate change effects on carbon pools and on carbon fluxes within the river and to the ocean and the atmosphere, we developed the riverine carbon model RivCM, which is directly coupled to the well-established dynamic vegetation and hydrology model LPJmL. We show here that RivCM successfully reproduces observed values in exported carbon and riverine carbon concentration. We evaluate future changes in riverine carbon by applying RivCM for climate forcing from five climate models and three CO2 emission scenarios (SRES). We find that climate change causes a doubling of riverine organic carbon in the Southern and Western basin while reducing it by 20 % in the eastern and northern parts. In contrast, the amount of riverine inorganic carbon shows a 2- to 3-fold increase in the entire basin, independent of the SRES scenario. The export of carbon to the atmosphere increases as well with an average of about 30 %. In contrast, changes in future export of organic carbon to the Atlantic Ocean depend on the SRES scenario and are projected to either decrease by about 8.9 % (SRES A1B) or increase by about 9.1 % (SRES A2). Such changes in the terrigenous–riverine system could have local and regional impacts on the carbon budget of the whole Amazon Basin and parts of the Atlantic Ocean. Changes in the riverine carbon could lead to a shift in the riverine nutrient supply and pH, while changes in the exported carbon to the ocean leads to changes in the supply of organic material that acts as food source in the Atlantic. On the larger scale the increased outgassing of CO2 could turn the Amazon Basin from a sink of carbon to a considerable source. Therefore we propose that the coupling of terrestrial and riverine carbon budget should be included in subsequent analysis of the future regional carbon budget.


OENO One ◽  
2015 ◽  
Vol 49 (2) ◽  
pp. 103 ◽  
Author(s):  
Wilfredo Yzarra ◽  
Janeet Sanabria ◽  
Hanna Caceres ◽  
Olimpio Solis ◽  
Jean-Paul Lhomme

<p style="text-align: justify;"><strong>Aim</strong>: The Peruvian region of Ica is an important area of grapevine cultivation, mainly for the production of pisco, the flagship hard drink of Peru. The effects of a changing climate have been assessed using the recorded temperatures of a weather station together with projected climates for the 21<sup>st</sup> century generated under the A1B SRES scenario.</p><p style="text-align: justify;"><strong>Methods and results</strong>: The bioclimatic indices commonly used in grapevine studies have increased in recent years and will continue to rise along the 21<sup>st</sup> century in relation to increasing temperature. In parallel, the phenology of four pisco cultivars (Quebranta, Torontel, Moscatel and Italia) has been experimentally assessed during four consecutive years, first to determine their cumulative growing degree-days and then to project them in past and future climates.</p><p style="text-align: justify;"><strong>Conclusion</strong>: It appears that the cycle lengths of these cultivars have been shortened in recent years and that this tendency will continue all along the 21<sup>st</sup> century.</p><strong>Significance and impact of the study</strong>: Assessing the immediate and future impact of climate change makes it possible to identify potential crop production problems and provides information on adaptation strategies.


Sign in / Sign up

Export Citation Format

Share Document