transitional waters
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 34)

H-INDEX

25
(FIVE YEARS 4)

Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1092
Author(s):  
Maurizio Pinna ◽  
Benedetta Saccomanno ◽  
Gabriele Marini ◽  
Francesco Zangaro ◽  
Akbota Kabayeva ◽  
...  

The ecological assessment of European aquatic ecosystems is regulated under the framework directives on strategy for water and marine environments. Benthic macroinvertebrates are the most used biological quality element for ecological assessment of rivers, coastal-marines, and transitional waters. The morphological identification of benthic macroinvertebrates is the current tool for their assessment. Recently, DNA-based tools have been proposed as effective alternatives. The main current limits of DNA-based applications include the incompleteness of species recorded in the DNA barcode reference libraries and the primers bias. Here, we analysed the influence of the incompleteness of DNA barcode databases on species diversity indices, ecological indicators, and ecological assessment in transitional waters of the southeast Mediterranean, taking into account the availability of commonly sequenced and deposited genomic regions for listed species. The ecological quality status assigned through the potential application of both approaches to the analysed transitional water ecosystems was different in 27% of sites. We also analysed the inter-specific genetic distances to evaluate the potential application of the DNA metabarcoding method. Overall, this work highlights the importance to expand the barcode databases and to analyse, at the regional level, the gaps in the DNA barcodes.


2021 ◽  
Author(s):  
Jade Leconte ◽  
Youri Timsit ◽  
Tom O Delmont ◽  
Magali Lescot ◽  
Gwenael Piganeau ◽  
...  

The importance of marine phytoplankton in food webs and biogeochemical cycles makes the study of prokaryotic and eukaryotic phytoplankton species essential to understand changes in the global ecosystem. As plankton is transported by ocean currents, its community composition varies. Some species are abundant in contrasting environments, which raises the question of the genomic basis of their adaptation. Here we exploit the cosmopolitan distribution of the eukaryotic picoalgae Bathycoccus prasinos to investigate its genomic variations among temperate and polar populations. Using multiple metagenomic data, we found that ~5% of genomic positions of B. prasinos are variable, with an overwhelming majority of biallelic patterns. Cold and temperate waters are clearly associated with changes in variant occurrences including striking differences at some non-synonymous positions of several genes. Data from transitional waters showed more balanced polymorphism at most of these positions. The comparison of mesophilic and psychrophilic gene variants of this species suggests that its adaptation to cold waters may involve few amino acid changes at positions of protein structures critical for physical and functional properties. These results provide new insights into the genomic diversity and temperature-associated amino acid changes of a cosmopolitan eukaryotic planktonic species.


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1898
Author(s):  
Phoebe A. J. O’Brien ◽  
Irina Polovodova Asteman ◽  
Vincent M. P. Bouchet

Transitional waters straddle the interface between marine and terrestrial biomes and, among others, include fjords, bays, lagoons, and estuaries. These coastal systems are essential for transport and manufacturing industries and suffer extensive anthropogenic exploitation of their ecosystem services for aquaculture and recreational activities. These activities can have negative effects on the local biota, necessitating investigation and regulation. As a result of this, EcoQS (ecological quality status) assessment has garnered great attention as an essential aspect of governmental bodies’ legislative decision-making process. Assessing EcoQS in transitional water ecosystems is problematic because these systems experience high natural variability and organic enrichment and often lack information about their pre-human impact, baseline, or “pristine” reference conditions, knowledge of which is essential to many commonly used assessment methods. Here, foraminifera can be used as environmental sentinels, providing ecological data such as diversity and sensitivity, which can be used as the basis for EcoQS assessment indices. Fossil shells of foraminifera can also provide a temporal aspect to ecosystem assessment, making it possible to obtain reference conditions from the study site itself. These foraminifera-based indices have been shown to correlate not only with various environmental stressors but also with the most common macrofaunal-based indices currently employed by bodies such as the Water Framework Directive (WFD). In this review, we firstly discuss the development of various foraminifera-based indices and address the challenge of how best to implement these synergistically to understand and regulate human environmental impact, particularly in transitional waters, which have historically suffered disproportionate levels of human impact or are difficult to assess with standard EcoQS methods. Further, we present some case studies to exemplify key issues and discuss potential solutions for those. Such key issues include, for example, the disparate performance of multiple indices applied to the same site and a proper assignment of EcoQS class boundaries (threshold values) for each index. Disparate aptitudes of indices to specific geomorphologic and hydrological regimes can be leveraged via the development of a site characteristics catalogue, which would enable the identification of the most appropriate index to apply, and the integration of multiple indices resulting in more representative EcoQS assessment in heterogenous transitional environments. In addition, the difficulty in assigning threshold values to systems without analogous unimpacted reference sites (a common issue among many transitional waters) can be overcome by recording EcoQS as an ecological quality ratio (EQR). Lastly, we evaluate the current status and future potential of an emerging field, genetic biomonitoring, focusing on how these new techniques can be used to increase the accuracy of EcoQS assessment in transitional systems by supplementing more established morphology-based methods.


Data in Brief ◽  
2021 ◽  
pp. 106920
Author(s):  
Vincent M.P. Bouchet ◽  
Fabrizio Frontalini ◽  
Fabio Francescangeli ◽  
Pierre-Guy Sauriau ◽  
Emmanuelle Geslin ◽  
...  

2021 ◽  
Vol 27 (3) ◽  
pp. 48-67
Author(s):  
M. O’Reilly ◽  
J. Boyle ◽  
S. Nowacki ◽  
M. Elliott ◽  
R. Foster

The history of monitoring transitional water fish in Scotland is briefly outlined. The requirements of the EU Water Framework Directive are explained and how this applies to the monitoring of transitional water fish communities in Scotland is described. The development of a monitoring programme for Scotland is outlined, including sampling methods and strategies. Six transitional waters were selected as representative for Scotland covering three different types of transitional water. A multi-metric tool, the Transitional Water Fish Classification Index was used to assess the ecological status of the fish communities in these waters and the operation of the different metrics and the creation of appropriate reference conditions is explained. The assessment tool was applied to survey data from 2005 to 2018, although only the more recent data fully met the tool requirements. The species composition and abundances in the respective transitional waters were compared. The fully valid surveys were all classed as of Good or High status, indicating the fish communities in all the representative transitional waters appeared to be in good ecological health. The efficacy of the different metrics is considered and some issues with Metric 2, enumerating migratory species, are discussed at length. A new multi-metric tool, the Estuarine Multi-metric Fish Index, is briefly discussed and its introduction for the assessments in Scotland is recommended.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3159
Author(s):  
Chiara Facca

Transitional Waters are worldwide high valuable ecosystems that have undergone significant anthropogenic impacts. The ecological assessment is therefore of fundamental importance to protect, manage and restore these ecosystems. Numerous approaches can be used to understand the effects of human pressures, and, in case, the effectiveness of recovery plans. Eutrophication, climate change and morphological loss impacts can be assessed by means of aquatic vegetation, benthic fauna, and nekton. Moreover, before planning new infrastructures or interventions, predictive approaches and statistical analyses can provide indispensable tools for management policies.


Sign in / Sign up

Export Citation Format

Share Document