est database
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 3)

H-INDEX

28
(FIVE YEARS 0)

2021 ◽  
Author(s):  
◽  
Cassidy Moeke

<p>The greenshell mussel Perna canaliculus is considered to be a suitable biomonitor for heavy metal pollution. This is due to their ability to accumulate and tolerate heavy metals in their tissues. These characteristics make them useful for identifying protein biomarkers of heavy metal pollution, as well as proteins associated with heavy metal detoxification and homeostasis. However, the identification of such proteins is restricted by the greenshell mussel being poorly represented in sequence databases. Several strategies have previously been used to identify proteins in unsequenced species, but only one of these strategies has been applied to the greenshell mussel. The objective of this thesis was to examine different protein identification strategies using a combined two-dimensional gel electrophoresis and MALDI-TOF/TOF mass spectrometry approach. The protein identification strategies used include a Mascot database search, as well as de novo sequencing approaches using PEAKS DB and SPIDER homology searches. In total, 155 protein spots were excised and a total of 68 identified. Fifty-six proteins were identified using a Mascot search against the Mollusca, NCBInr and Invertebrate EST database, with seven single-peptide identifications. De novo sequencing strategies identified additional proteins, with two from a PEAKS DB search and 10 from an error-tolerant SPIDER homology search. The most noticeable protein groups identified were cytoskeletal proteins, stress response proteins and those involved in protein biosynthesis. Actin and tubulin made up the bulk of the identifications, accounting for 39% of all proteins identified. This multifaceted approach was shown to be useful for identifying proteins in the greenshell mussel Perna canaliculus. Mascot and PEAKS DB performed equally well, while the error-tolerant functionality of SPIDER was useful for identifying additional proteins. A subsequent search against the Invertebrate EST database was also found to be useful for identifying additional proteins. Despite this, more than half of all proteins remained unidentified. Most of these proteins either failed to produce good quality MS spectra or did not find a match to a sequence in the database. Future research should first focus on obtaining quality MS spectra for all proteins concerned and then examine other strategies that may be more suitable for identifying proteins for species with poor representation in sequence databases.</p>


2021 ◽  
Author(s):  
◽  
Cassidy Moeke

<p>The greenshell mussel Perna canaliculus is considered to be a suitable biomonitor for heavy metal pollution. This is due to their ability to accumulate and tolerate heavy metals in their tissues. These characteristics make them useful for identifying protein biomarkers of heavy metal pollution, as well as proteins associated with heavy metal detoxification and homeostasis. However, the identification of such proteins is restricted by the greenshell mussel being poorly represented in sequence databases. Several strategies have previously been used to identify proteins in unsequenced species, but only one of these strategies has been applied to the greenshell mussel. The objective of this thesis was to examine different protein identification strategies using a combined two-dimensional gel electrophoresis and MALDI-TOF/TOF mass spectrometry approach. The protein identification strategies used include a Mascot database search, as well as de novo sequencing approaches using PEAKS DB and SPIDER homology searches. In total, 155 protein spots were excised and a total of 68 identified. Fifty-six proteins were identified using a Mascot search against the Mollusca, NCBInr and Invertebrate EST database, with seven single-peptide identifications. De novo sequencing strategies identified additional proteins, with two from a PEAKS DB search and 10 from an error-tolerant SPIDER homology search. The most noticeable protein groups identified were cytoskeletal proteins, stress response proteins and those involved in protein biosynthesis. Actin and tubulin made up the bulk of the identifications, accounting for 39% of all proteins identified. This multifaceted approach was shown to be useful for identifying proteins in the greenshell mussel Perna canaliculus. Mascot and PEAKS DB performed equally well, while the error-tolerant functionality of SPIDER was useful for identifying additional proteins. A subsequent search against the Invertebrate EST database was also found to be useful for identifying additional proteins. Despite this, more than half of all proteins remained unidentified. Most of these proteins either failed to produce good quality MS spectra or did not find a match to a sequence in the database. Future research should first focus on obtaining quality MS spectra for all proteins concerned and then examine other strategies that may be more suitable for identifying proteins for species with poor representation in sequence databases.</p>


2021 ◽  
Vol 2 ◽  
Author(s):  
Kate M. J. de Mattos-Shipley ◽  
Gary D. Foster ◽  
Andy M. Bailey

Interrogation of an EST database for Clitopilus passeckerianus identified a putative homolog to the unusual stress response gene from yeast; ddr48, as being upregulated under pleuromutilin production conditions. Silencing of this gene, named cprp, produced a population of transformants which demonstrated significantly reduced pleuromutilin production. Attempts to complement a Saccharomyces cerevisiae ddr48 mutant strain (strain Y16748) with cprp were hampered by the lack of a clearly identifiable mutant phenotype, but interestingly, overexpression of either ddr48 or cprp in S. cerevisiae Y16748 led to a conspicuous and comparable reduction in growth rate. This observation, combined with the known role of DDR48 proteins from a range of fungal species in nutrient starvation and stress responses, raises the possibility that this family of proteins plays a role in triggering oligotrophic growth. Localization studies via the production of a Cprp:GFP fusion protein in C. passeckerianus showed clear localization adjacent to the hyphal septa and, to a lesser extent, cell walls, which is consistent with the identification of DDR48 as a cell wall-associated protein in various yeast species. To our knowledge this is the first study demonstrating that a DDR48-like protein plays a role in the regulation of a secondary metabolite, and represents the first DDR48-like protein from a basidiomycete. Potential homologs can be identified across much of the Dikarya, suggesting that this unusual protein may play a central role in regulating both primary and secondary metabolism in fungi.


2017 ◽  
Vol 10 (1) ◽  
Author(s):  
Anjan Hazra ◽  
Nirjhar Dasgupta ◽  
Chandan Sengupta ◽  
Sauren Das

2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Manrique Mata-Montero ◽  
Nabil Shalaby ◽  
Bradley Sheppard

Obtaining unique oligos from an EST database is a problem of great importance in bioinformatics, particularly in the discovery of new genes and the mapping of the human genome. Many algorithms have been developed to find unique oligos, many of which are much less time consuming than the traditional brute force approach. An algorithm was presented by Zheng et al. (2004) which finds the solution of the unique oligos search problem efficiently. We implement this algorithm as well as several new algorithms based on some theorems included in this paper. We demonstrate how, with these new algorithms, we can obtain unique oligos much faster than with previous ones. We parallelize these new algorithms to further improve the time of finding unique oligos. All algorithms are run on ESTs obtained from a Barley EST database.


Gene ◽  
2013 ◽  
Vol 517 (2) ◽  
pp. 212-217 ◽  
Author(s):  
Xavier Nirmala ◽  
Marc F. Schetelig ◽  
Fahong Yu ◽  
Alfred M. Handler

2012 ◽  
Vol 34 (6) ◽  
pp. 671-679 ◽  
Author(s):  
Vignesh Dhandapani ◽  
Su Ryun Choi ◽  
Parameswari Paul ◽  
Yong-Kwon Kim ◽  
Nirala Ramchiary ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document