Balancing the trade-off between measurement uncertainty and measurement time in optical metrology using design of experiments, meta-modelling and convex programming

2021 ◽  
Vol 35 ◽  
pp. 209-216
Author(s):  
Daniel Gauder ◽  
Johannes Gölz ◽  
Michael Biehler ◽  
Moritz Diener ◽  
Gisela Lanza
2013 ◽  
Vol 805-806 ◽  
pp. 688-692
Author(s):  
Xin Fang ◽  
Xue Liang Huang ◽  
Yan Zhu

Nowadays, there are various devices to detect the power quality of AC grid, where uncertainty of voltage deviation is an important parameter to investigate the power quality. National standards specify several sinusoidal waveforms to detect it, usually implemented into the detecting devices. But these waveforms are not enough and a novel method of detecting measurement uncertainty of voltage deviation is proposed in this paper. A series of detection waveforms are designed using this method. The simulation results verify that the method is available to measure uncertainty of voltage deviation more accurately. Moreover, it can be used to justify whether the basic measurement time interval of voltage deviation meets IEC standard requirements.


2019 ◽  
Vol 10 (1) ◽  
pp. 37 ◽  
Author(s):  
Michaela Kritikos ◽  
Lissette Concepción Maure ◽  
Alfredo Alejandro Leyva Céspedes ◽  
Daynier Rolando Delgado Sobrino ◽  
Róbert Hrušecký

This paper addresses the uncertainty analysis in the case of a coordinate measuring machine. The main goal was analyzing, quantifying, and drawing conclusions on the influence of key factors and their interactions on the measurements’ uncertainty of the variable’s parallelism, angularity, roundness, diameter, and distance. In order to achieve this goal, a Random Factorial Design of Experiments was designed and implemented. It focused on the factors Stylus diameter, Step width, and Speed using three random levels each. For the solution of the experiment, an analysis of variance was used. The study was carried out on the coordinate measuring machine (CMM) ZEISS CenterMax. It was concluded that the interaction effects among Stylus diameter, Step width, and Speed were active at a confidence level of 95%. Besides, it was possible to estimate random factors‘ variance and their contribution to the total variation. Among the main effects, the Stylus diameter showed to be the one with the biggest influence. The paper also quantifies the influence in the measurement uncertainty, where the highest value of standard uncertainty belonged to the Stylus diameter in the evaluation of the variable’s angularity and diameter. Besides, the Speed factor was proved to have the biggest influence on the roundness’ measurement and evaluation.


Author(s):  
Giovanni Moroni ◽  
Stefano Petro`

Uncertainty is a key concept in any environment which involves measurements to ensure process quality: a trade-off has to be found between measurement costs, which increase as uncertainty lowers, and costs related to measurement errors. In mechanics, geometrical conformance is a common requirement. Two similar standards series deal with the problem of uncertainty in geometrical error estimate: ASME B89.7.3 and ISO 14253. Geometrical inspection is often performed by means of a “Coordinate Measuring Machine” (CMM). For a CMM, a trade off between measurement and errors costs may be found by optimizing the sampling strategy. In this work a cost function will be proposed as support for finding a trade-off between measurement uncertainty and costs. This function may be optimized by means of an heuristic algorithm. The method will involve repeated measurements of calibrated parts to evaluate uncertainty (like in ISO/TS 15330-3). A case study will be proposed.


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 198
Author(s):  
Miodrag D. Kušljević ◽  
Josif J. Tomić ◽  
Predrag D. Poljak

This article deals with the implementation of the P-Class PMU compliant with IEC/IEEE Standard 60255-118-1:2018 by usage of a multiple-resonator (MR)-based approach for harmonic analysis having been proposed recently. In previously published articles, it has been shown that a trade-off between opposite requirements is possible by shifting a measurement time stamp along the filter window. Positioning the time stamp in a proximity of the time window center assures flat-top frequency responses. In this article, through simulation tests carried out under various conditions, it is shown that requirements of the IEC/IEEE Standard 60255-118-1:2018 can be satisfied by the second and third order MR structure for particular conditions of the time stamp location.


2020 ◽  
Vol 69 (3) ◽  
pp. 10-19
Author(s):  
Zdenko Godec ◽  
Vjenceslav Kuprešanin ◽  
Filip Razum

Low voltage LI measurement with recurrent surge generator and oscilloscope is a method used for investigatingLI distribution in transformer windings or in model prototypes for various conditions. In the paper, the procedure for measurement uncertainty estimation of characteristic voltage and time quantities is given. The procedure is similar to the procedure given in the IEC 60076-2 standard for high voltage testing, but it is fully adapted to low voltage measurement with recurrent generator and oscilloscope. For the purpose of reducing the measurement uncertainties and the measurement time, a new procedure is proposed.


1982 ◽  
Vol 14 (2) ◽  
pp. 109-113 ◽  
Author(s):  
Suleyman Tufekci
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document