extracellular nucleotide
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 1)

H-INDEX

24
(FIVE YEARS 0)

Author(s):  
Mariana Afonso ◽  
Ana Rita Mestre ◽  
Guilherme Silva ◽  
Ana Catarina Almeida ◽  
Rodrigo A. Cunha ◽  
...  

Host innate immunity is fundamental to the resistance against Candida albicans and Candida glabrata infection, two of the most important agents contributing to human fungal infections. Phagocytic cells, such as neutrophils, constitute the first line of host defense mechanisms, and the release of neutrophil extracellular traps (NETs) represent an important strategy to immobilize and to kill invading microorganisms, arresting the establishment of infection. The purinergic system operates an important role in the homeostasis of immunity and inflammation, and ectophosphatase and ectonucleotidase activities are recognized as essential for survival strategies and infectious potential of several pathogens. The expression and unique activity of a 3′-nucleotidase/nuclease (3′NT/NU), able to hydrolyze not only AMP but also nucleic acids, has been considered as part of a possible mechanism of microbes to escape from NETs. The aim of the present study was to evaluate if yeasts escape from the NET-mediated killing through their 3′NT/NU enzymatic activity contributing to NET-hydrolysis. After demonstrating the presence of 3′NT/NU activity in C. albicans, C. glabrata, and Saccharomyces cerevisiae, we show that, during neutrophils-Candida interaction, when NETs formation and release are triggered, NETs digestion occurs and this process of NETs disruption promoted by yeast cells was prevented by ammonium tetrathiomolybdate (TTM), a 3′NT/NU inhibitor. In conclusion, although the exact nature and specificity of yeasts ectonucleotidases are not completely unraveled, we highlight the importance of these enzymes in the context of infection, helping yeasts to overcome host defenses, whereby C. albicans and C. glabrata can escape NET-mediate killing through their 3′NT/NU activity.



Author(s):  
Herbert Zimmermann

AbstractGeoffrey Burnstock will be remembered as the scientist who set up an entirely new field of intercellular communication, signaling via nucleotides. The signaling cascades involved in purinergic signaling include intracellular storage of nucleotides, nucleotide release, extracellular hydrolysis, and the effect of the released compounds or their hydrolysis products on target tissues via specific receptor systems. In this context ectonucleotidases play several roles. They inactivate released and physiologically active nucleotides, produce physiologically active hydrolysis products, and facilitate nucleoside recycling. This review briefly highlights the development of our knowledge of two types of enzymes involved in extracellular nucleotide hydrolysis and thus purinergic signaling, the ectonucleoside triphosphate diphosphohydrolases, and ecto-5′-nucleotidase.



2020 ◽  
Vol 39 (10-12) ◽  
pp. 1400-1409
Author(s):  
Mikolaj Opielka ◽  
Bartosz Sobocki ◽  
Paulina Mierzejewska ◽  
Ryszard T. Smolenski


2020 ◽  
Vol 100 (1) ◽  
pp. 211-269 ◽  
Author(s):  
Volker Vallon ◽  
Robert Unwin ◽  
Edward W. Inscho ◽  
Jens Leipziger ◽  
Bellamkonda K. Kishore

The understanding of the nucleotide/P2 receptor system in the regulation of renal hemodynamics and transport function has grown exponentially over the last 20 yr. This review attempts to integrate the available data while also identifying areas of missing information. First, the determinants of nucleotide concentrations in the interstitial and tubular fluids of the kidney are described, including mechanisms of cellular release of nucleotides and their extracellular breakdown. Then the renal cell membrane expression of P2X and P2Y receptors is discussed in the context of their effects on renal vascular and tubular functions. Attention is paid to effects on the cortical vasculature and intraglomerular structures, autoregulation of renal blood flow, tubuloglomerular feedback, and the control of medullary blood flow. The role of the nucleotide/P2 receptor system in the autocrine/paracrine regulation of sodium and fluid transport in the tubular and collecting duct system is outlined together with its role in integrative sodium and fluid homeostasis and blood pressure control. The final section summarizes the rapidly growing evidence indicating a prominent role of the extracellular nucleotide/P2 receptor system in the pathophysiology of the kidney and aims to identify potential therapeutic opportunities, including hypertension, lithium-induced nephropathy, polycystic kidney disease, and kidney inflammation. We are only beginning to unravel the distinct physiological and pathophysiological influences of the extracellular nucleotide/P2 receptor system and the associated therapeutic perspectives.



2020 ◽  
Vol 10 (12) ◽  
pp. 864-876
Author(s):  
Janayne Luihan Silva ◽  
Bruno Quintanilha Faria ◽  
Vinícius Marques Arruda ◽  
Fernanda Cardoso da Silva ◽  
Joyce Ferreira da Costa Guerra ◽  
...  


2019 ◽  
Vol 20 (3) ◽  
pp. 633-640 ◽  
Author(s):  
Scott Yeudall ◽  
Norbert Leitinger ◽  
Victor E. Laubach


EMBO Reports ◽  
2019 ◽  
Vol 20 (2) ◽  
Author(s):  
Shadab Nizam ◽  
Xiaoyu Qiang ◽  
Stephan Wawra ◽  
Robin Nostadt ◽  
Felix Getzke ◽  
...  


2018 ◽  
Author(s):  
Barbara Kutryb-Zajac ◽  
Patrycja Jablonska ◽  
Marcin Serocki ◽  
Alicja Bulinska ◽  
Paulina Mierzejewska ◽  
...  

AbstractExtracellular nucleotide catabolism contributes to immunomodulation, cell differentiation and tissue mineralization by controlling nucleotide and adenosine concentrations and its purinergic effects. Disturbances of purinergic signaling in valves may lead to its calcification. This study aimed to investigate the side-specific changes in extracellular nucleotide and adenosine metabolism in the aortic valve during calcific aortic valve disease (CAVD) and to identify the individual enzymes that are involved in these pathways as well as their cellular origin.Stenotic aortic valves were characterized by reduced levels of extracellular ATP removal and impaired production of adenosine. Respectively, already reduced levels of extracellular adenosine were immediately degraded further due to the elevated rate of adenosine deamination. For the first time, we revealed that this metabolic pattern was observed only on the fibrosa surface of stenotic valve that is consistent with the mineral deposition on the aortic side of the valve. Furthermore, we demonstrated that non-stenotic valves expressed mostly ecto-nucleoside triphosphate diphosphohydrolase 1 (eNTPD1) and ecto-5’nucleotidase (e5NT), while stenotic valves ecto-nucleotide pyrophosphatase/ phosphodiesterase 1, alkaline phosphatase and ecto-adenosine deaminase (eADA). On the surface of endothelial cells, isolated from non-stenotic valves, high activities of eNTPD1 and e5NT were found. Whereas, in valvular interstitial cells, eNPP1 activity was also detected. Stenotic valve immune infiltrate was an additional source of eADA. We demonstrated the presence of A1, A2a and A2b adenosine receptors in both, non-stenotic and stenotic valves with diminished expression of A2a and A2b in the former.Extracellular nucleotide and adenosine metabolism that involves complex ecto-enzyme pathways and adenosine receptor signaling were adversely modified in CAVD. In particular, diminished activities of eNTPD1 and e5NT with the increase in eADA that originated from valvular endothelial and interstitial cells as well as from immune inflitrate may affect aortic valve extracellular nucleotide concentrations to favor a proinflammatory milieu, highlighting a potential mechanism and target for CAVD therapy.



Sign in / Sign up

Export Citation Format

Share Document