nasa goddard space
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 13)

H-INDEX

15
(FIVE YEARS 0)

2021 ◽  
Vol 217 (8) ◽  
Author(s):  
R. Pfaff ◽  
P. Uribe ◽  
R. Fourre ◽  
J. Kujawski ◽  
N. Maynard ◽  
...  

AbstractThe Vector Electric Field Investigation (VEFI) on the C/NOFS satellite comprises a suite of sensors controlled by one central electronics box. The primary measurement consists of a vector DC and AC electric field detector which extends spherical sensors with embedded pre-amps at the ends of six, 9.5-m booms forming three orthogonal detectors with baselines of 20 m tip-to-tip each. The primary VEFI measurement is the DC electric field at 16 vectors/sec with an accuracy of 0.5 mV/m. The electric field receiver also measures the broad spectra of irregularities associated with equatorial spread-F and related ionospheric processes that create the scintillations responsible for the communication and navigation outages for which the C/NOFS mission is designed to understand and predict. The AC electric field measurements range from ELF to HF frequencies.VEFI includes a flux-gate magnetometer providing DC measurements at 1 vector/sec and AC-coupled measurements at 16 vector/sec, as well as a fast, fixed-bias Langmuir probe that serves as the input signal to trigger the VEFI burst memory collection of high time resolution wave data when plasma density depletions are encountered in the low latitude nighttime ionosphere. A bi-directional optical lightning detector designed by the University of Washington (UW) provides continuous average lightning counts at different irradiance levels as well as high time resolution optical lightning emissions captured in the burst memory. The VEFI central electronics box receives inputs from all of the sensors and includes a configurable burst memory with 1–8 channels at sample rates as high as 32 ks/s per channel. The VEFI instrument is thus one experiment with many sensors. All of the instruments were designed, built, and tested at the NASA/Goddard Space Flight Center with the exception of the lightning detector which was designed at UW. The entire VEFI instrument was delivered on budget in less than 2 years.VEFI included a number of technical advances and innovative features described in this article. These include: (1) Two independent sets of 3-axis, orthogonal electric field double probes; (2) Motor-driven, pre-formed cylinder booms housing signal wires that feed pre-amps within tip-mounted spherical sensors; (3) Extended shadow equalizers (2.5 times the sphere diameter) to mitigate photoelectron shadow mismatch for sun angles along the boom directions, particularly important at sunrise/sunset for a low inclination satellite; (4) DC-coupled electric field channels with “boosted” or pre-emphasized amplitude response at ELF frequencies; (5) Miniature multi-channel spectrum analyzers using hybrid technology; (6) Dual-channel optical lightning detector with on-board comparators and counters for 7 irradiance levels with high-time-resolution data capture; (7) Spherical Langmuir probe with Titanium Nitride-coated sensor element and guard; (8) Selectable data rates including 200 kbps (fast), 20 kbps (nominal), and 2 kbps (low for real-time TDRSS communication); and (9) Highly configurable burst memory with selectable channels, sample rates and number, duration, and precursor length of bursts, chosen based on best triggering algorithm “score”.This paper describes the various sensors that constitute the VEFI experiment suite and discusses their operation during the C/NOFS mission. Examples of data are included to illustrate the performance of the different sensors in space.


Author(s):  
Emily L Wilson ◽  
Vincent J. Riot ◽  
A. J. DiGregorio ◽  
guruthisvaran Ramu ◽  
Paul Cleveland ◽  
...  

Abstract We present the final design, environmental testing, and launch history of MiniCarb, a 6U CubeSat developed through a partnership between NASA Goddard Space Flight Center and Lawrence Livermore National Laboratory. MiniCarb’s science payload, developed at Goddard, was an occultation-viewing, passive laser heterodyne radiometer for observing methane, carbon dioxide, and water vapor in Earth’s atmosphere at ~1.6 microns. MiniCarb’s satellite, developed at Livermore, implemented their CubeSat Next Generation Bus plug-and-play architecture to produce a modular platform that could be tailored to a range of science payloads. Following the launch on December 5, 2019, MiniCarb traveled to the International Space Station and was set into orbit on February 1, 2020 via Northrop Grumman’s (NG) Cygnus capsule which deployed MiniCarb with tipoff rotation of about 20 deg/sec (significantly higher than the typical rate of 3 deg/sec from prior CubeSats), from which the attitude control system was unable to recover resulting in a loss of power. In spite of this early failure, MiniCarb had many successes including rigorous environmental testing, successful deployment of its solar panels, and a successful test of the radio and communication through the Iridium network. This prior work and enticing cost (approximately $2M for the satellite and $250K for the payload) makes MiniCarb an ideal candidate for a low-cost and rapid rebuild as a single orbiter or constellation to globally observe key greenhouse gases.


2021 ◽  
Author(s):  
Robert Pfaff ◽  
Paulo Uribe ◽  
Remy Fourre ◽  
Joe Kujawski ◽  
Nelson Maynard ◽  
...  

Abstract The Vector Electric Field Investigation (VEFI) on the C/NOFS satellite comprises a suite of sensors controlled by one central electronics box. The primary measurement consists of a vector DC and AC electric field detector which extends spherical sensors with embedded pre-amps at the ends of six, 9.5-m booms forming three orthogonal detectors with baselines of 20 m tip-to-tip each. The primary VEFI measurement is the DC electric field at 16 vectors/sec with an accuracy of 0.5 mV/m. The electric field receiver also measures the broad spectra of irregularities associated with equatorial spread-F and related ionospheric processes that create the scintillations responsible for the communication and navigation outages for which the C/NOFS mission is designed to understand and predict. The AC electric field measurements range from ELF to HF frequencies. VEFI includes a flux-gate magnetometer providing DC measurements at 1 vector/sec and AC-coupled measurements at 16 vector/sec, as well as a fast, fixed-bias Langmuir probe that serves as the input signal to trigger the VEFI burst memory collection of high time resolution wave data when plasma density depletions are encountered in the low latitude nighttime ionosphere. A bi-directional optical lightning detector designed by the University of Washington (UW) provides continuous average lightning counts at different irradiance levels as well as high time resolution optical lightning emissions captured in the burst memory. The VEFI central electronics box receives inputs from all of the sensors and includes a configurable burst memory with 1-8 channels at sample rates as high as 32 ks/s per channel. The VEFI instrument is thus one experiment with many sensors. All of the instruments were designed, built, and tested at the NASA/Goddard Space Flight Center with the exception of the lightning detector which was designed at UW. The entire VEFI instrument was delivered on budget in less than 2 years.VEFI included a number of technical advances and innovative features described in this article. These include: (1)Two independent sets of 3-axis, orthogonal electric field double probes; (2) Motor-driven, pre-formed cylinder booms housing signal wires that feed pre-amps within tip-mounted spherical sensors; (3) Extended shadow equalizers (2.5 times the sphere diameter) to mitigate photoelectron shadow mismatch for sun angles along the boom directions, particularly important at sunrise/sunset for a low inclination satellite; (4) DC-coupled electric field channels with “boosted” or pre-emphasized amplitude response at ELF frequencies; (5) Miniature multi-channel spectrum analyzers using hybrid technology; (6) Dual-channel optical lightning detector with on-board comparators and counters for 7 irradiance levels with high-time-resolution data capture; (7) Spherical Langmuir probe with Titanium Nitride-coated sensor element and guard; (8) Selectable data rates including 200 kbps (fast), 20 kbps (nominal), and 2 kbps (low for real-time TDRSS communication); and (9) Highly configurable burst memory with selectable channels, sample rates and number, duration, and precursor length of bursts, chosen based on best triggering algorithm “score”.This paper describes the various sensors that constitute the VEFI experiment suite and discusses their operation during the C/NOFS mission. Examples of data are included to illustrate the performance of the different sensors in space.


2021 ◽  
Vol 30 (7/8) ◽  
pp. 11-16
Author(s):  
Yeon-Han KIM ◽  
Kyungsuk CHO ◽  
Seonghwan CHOI ◽  
Su-Chan BONG ◽  
Coronagraph Team

The Korea Astronomy and Space Science Institute (KASI), in collaboration with the NASA Goddard Space Flight Center (GSFC), has been developing a diagnostic coronagraph to be deployed in 2023 on the International Space Station (ISS). The mission is known as “Coronal Diagnostic Experiment (CODEX)”, which is designed to obtain simultaneous measurements of the electron density, temperature, and velocity in the 2.5- to 10-Rs range by using multiple filters. The coronagraph will be installed and operated on the ISS to understand the physical conditions in the solar wind acceleration region and to enable and validate the next generation space weather models.


2021 ◽  
Author(s):  
Robert Pfaff ◽  
Paulo Uribe ◽  
Remy Fourre ◽  
Joe Kujawski ◽  
Nelson Maynard ◽  
...  

Abstract The Vector Electric Field Investigation (VEFI) on the C/NOFS satellite comprises a suite of sensors controlled by one central electronics box. The primary measurement consists of a vector DC and AC electric field detector which extends spherical sensors with embedded pre-amps at the ends of six, 9.5-m booms forming three orthogonal detectors with baselines of 20 m tip-to-tip each. The primary VEFI measurement is the DC electric field at 16 vectors/sec with an accuracy of 0.5 mV/m. The electric field receiver also measures the broad spectra of irregularities associated with equatorial spread-F and related ionospheric processes that create the scintillations responsible for the communication and navigation outages for which the C/NOFS mission is designed to understand and predict. The AC electric field measurements range from ELF to HF frequencies. VEFI includes a flux-gate magnetometer providing DC measurements at 1 vector/sec and AC-coupled measurements at 16 vector/sec, as well as a fast, fixed-bias Langmuir probe that serves as the input signal to trigger the VEFI burst memory collection of high time resolution wave data when plasma density depletions are encountered in the low latitude nighttime ionosphere. A bi-directional optical lightning detector designed by the University of Washington (UW) provides continuous average lightning counts at different irradiance levels as well as high time resolution optical lightning emissions captured in the burst memory. The VEFI central electronics box receives inputs from all of the sensors and includes a configurable burst memory with 1-8 channels at sample rates as high as 32 ks/s per channel. The VEFI instrument is thus one experiment with many sensors. All of the instruments were designed, built, and tested at the NASA/Goddard Space Flight Center with the exception of the lightning detector which was designed at UW. The entire VEFI instrument was delivered on budget in less than 2 years.VEFI included a number of technical advances and innovative features described in this article. These include: (1)Two independent sets of 3-axis, orthogonal electric field double probes; (2) Motor-driven, pre-formed cylinder booms housing signal wires that feed pre-amps within tip-mounted spherical sensors; (3) Extended shadow equalizers (2.5 times the sphere diameter) to mitigate photoelectron shadow mismatch for sun angles along the boom directions, particularly important at sunrise/sunset for a low inclination satellite; (4) DC-coupled electric field channels with “boosted” or pre-emphasized amplitude response at ELF frequencies; (5) Miniature multi-channel spectrum analyzers using hybrid technology; (6) Dual-channel optical lightning detector with on-board comparators and counters for 7 irradiance levels with high-time-resolution data capture; (7) Spherical Langmuir probe with Titanium Nitride-coated sensor element and guard; (8) Selectable data rates including 200 kbps (fast), 20 kbps (nominal), and 2 kbps (low for real-time TDRSS communication); and (9) Highly configurable burst memory with selectable channels, sample rates and number, duration, and precursor length of bursts, chosen based on best triggering algorithm “score”.This paper describes the various sensors that constitute the VEFI experiment suite and discusses their operation during the C/NOFS mission. Examples of data are included to illustrate the performance of the different sensors in space.


Author(s):  
Matthew L. Walker McLinden ◽  
Lihua Li ◽  
Gerald M. Heymsfield ◽  
Michael Coon ◽  
Amber Emory

AbstractThe NASA/Goddard Space Flight Center’s (GSFC’s) W-band (94 GHz) Cloud Radar System (CRS) has been comprehensively updated to modern solid-state and digital technology. This W-band (94 GHz) radar flies in nadir-pointing mode on the NASA ER-2 high-altitude aircraft, providing polarimetric reflectivity and Doppler measurements of clouds and precipitation. This paper describes the design and signal processing of the upgraded CRS. It includes details on the hardware upgrades (SSPA transmitter, antenna, and digital receiver) including a new reflectarray antenna and solid-state transmitter. It also includes algorithms, including internal loop-back calibration, external calibration using a direct relationship between volume reflectivity and the range-integrated backscatter of the ocean, and a modified staggered-PRF Doppler algorithm that is highly resistant to unfolding errors. Data samples obtained by upgraded CRS through recent NASA airborne science missions are provided.


Author(s):  
Robert E. Lafon ◽  
Armen Caroglanian ◽  
Haleh Safavi ◽  
Nikki Desch ◽  
Victoria C. Wu ◽  
...  

2021 ◽  
Author(s):  
Elinor Tuffnell ◽  
Johannes Laube ◽  
Emma Leedham Elvidge ◽  
Bill Sturges ◽  
Karina Adcock ◽  
...  

<p>Knowing the stratospheric lifetime of an Ozone Depleting Substance (ODS), and its potential depletion of ozone during that time, is vital to reliably monitor and control the use of ODSs. Here, we present improved policy-relevant parameters: Fractional Release Factors (FRFs), Ozone Depletion Potentials (ODPs), and stratospheric lifetimes, for four understudied long-lived CFCs: CFC-13 (CClF<sub>3</sub>), CFC-114 (CClF<sub>2</sub>CCCLF<sub>2</sub>), CFC-114a (CCl<sub>2</sub>FCF<sub>3</sub>), and CFC-115 (C<sub>2</sub>ClF<sub>5</sub>). Previously derived lifetime estimates for CFC-114 and CFC-115 have substantial uncertainties, while lifetime uncertainties for CFC-13 and CFC-114a are absent from the peer-reviewed literature (Carpenter & Danie <em>et al</em>, 2018).</p><p>This study used both observational and model data to investigate these compounds and this work derives, for the first time, observation-based lifetimes utilising measurements of air samples collected in the stratosphere. We also used a version of the NASA Goddard Space Flight Center (GSFC) 2-D atmospheric model driven by temperature and transport fields derived from MERRA/MERRA-2 reanalysis.</p><p>FRFs for these compounds, which had been lacking until now, were derived using stratospheric air samples collected from several research flights with the high-altitude aircraft M55-Geophysica, and the background trend from archived surface air samples from Cape Grim, Tasmania.</p><p> By using a previously-published correlation between lifetime and FRF for seven well-characterised compounds (CF<sub>4</sub>, C<sub>2</sub>F<sub>6</sub>, C<sub>3</sub>F<sub>8</sub>, CHF<sub>3</sub>, HFC-125, HFC-227ea and SF<sub>6</sub>), we were able to derive lifetimes for these four new species. Lifetime estimates for CFC-114a agreed within the uncertainties (agreement to one sigma) with the lifetime estimates compiled in Burkholder <em>et al</em>. (2018), while the one for CFC-114 agreed within 2 sigma (measurement-related uncertainties) with those cited in Burkholder <em>et al</em>. (2018). However, observation-based lifetimes for CFC-13 and CFC-115 only agreed with those in Burkholder <em>et al</em>. (2018) within 3 sigma. The lifetime uncertainties in this study were reduced compared to those in Carpenter & Danie <em>et al</em> (2018).</p><p>As our lifetime estimates for these latter two compounds are notably lower than previous estimates, this suggests that these two compounds may have had greater emissions than previously thought, in order to account for their abundance. It also implies that they will be removed from the atmosphere more quickly than previously thought.</p><p>New ODPs were derived for these compounds from their new lifetimes and FRFs. Since for two of these compounds (CFC-13 and CFC-114a), there is an absence of observation-derived ODPs in the peer-reviewed literature, this is new and relevant information. The ODPs for CFC-114 and CFC-115 are comparable with estimates from the most recent Scientific Assessment of Ozone Depletion (Burkholder <em>et al</em>., 2018). Providing new and updated lifetimes, FRFs and ODPs for these compounds will help improve future estimates of their tropospheric emissions and their resulting damage to the stratospheric ozone layer.</p><p>             </p><p><strong>References</strong></p><p>Burkholder <em>et al</em>. (2018). Appendix A, Table A-1 in <em>Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project</em>, Report No. 58, World Meteorological Organization, Geneva, Switzerland,  http://ozone.unep.org/science/assessment/sap.</p><p>Carpenter, L.J., Danie, J.S.<em> et al </em>(2018). Scenarios and Information for Policymakers Chapter 6, Table 6-1 in <em>Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project</em>, Report No. 58, World Meteorological Organization, Geneva, Switzerland.</p>


Author(s):  
Alyson D. Topper ◽  
Jean-Marie Lauenstein ◽  
Edward P. Wilcox ◽  
Melanie D. Berg ◽  
Michael J. Campola ◽  
...  

2020 ◽  
Author(s):  
Taylor Thomas ◽  
Scott Luthcke ◽  
Teresa Pennington ◽  
Joseph Nicholas ◽  
David Rowlands ◽  
...  

<p>The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission launched on September 15<sup>th</sup>, 2018, with the primary goal of measuring ice sheet topographic change. The fundamental measurement used to achieve mission science objectives is the geolocation of individual photon bounce points. Geolocation is computed as a function of three complex measurements: (1) the position of the laser altimeter instrument in inertial space, (2) the pointing of each of the six individual laser beams in inertial space, and (3) the photon event round trip travel time observation measured by the Advanced Topographic Laser Altimeter System (ATLAS) instrument. ICESat-2 Precision Orbit Determination (POD) is responsible for computing the first of these; the precise position of the laser altimeter instrument.</p><p>ICESat-2 carries two identical on-board GPS receivers, both manufactured by RUAG Space. Tracking data collected by GPS receiver #1 is used as the primary data source for generating POD solutions. POD is performed using GEODYN, NASA Goddard Space Flight Center’s state-of-the-art orbit determination and geodetic parameter estimation software, and a reduced-dynamic solution strategy is employed. The GPS-based POD solutions are calibrated and validated using independent Satellite Laser Ranging (SLR) data from ground-based tracking stations.</p><p>ICESat-2 mission requirements state that the POD solutions must have a one-sigma radial accuracy of 3 cm over a 24-hour time interval. Here we show that early mission ICESat-2 POD performance is exceeding mission requirements. We describe in-depth the ICESat-2 spacecraft macro-model, used for non-conservative force modeling, and the results from tuning of the associated parameters. Lastly, we show the iterated GPS receiver antenna phase center variation map solution and assess its impact on POD performance.</p>


Sign in / Sign up

Export Citation Format

Share Document