scholarly journals Nonlinear suboptimal attitude control law for near-space hypersonic vehicle: Eigenvalue analysis and weight matrices design

Author(s):  
Peichao Mi ◽  
Qingxian Wu ◽  
Yuhui Wang

Abstract This paper considers a nonlinear suboptimal control problem for a near-space hypersonic vehicle's (NSHV's) attitude dynamics. The least-square and stable manifold methods first solve an unconstrained approximately optimal control law corresponding to the nonlinear attitude model. Then, to further meet the dynamic performance requirement of the attitude control system, a novel strategy based on the Koopman operator, symplectic geometric theory, and the stable manifold theorem is proposed to approximate the eigenvalues of the closed-loop nonlinear unconstrained approximated optimal control system. The weight matrices in the optimal performance index, which directly determine the output responses of the nonlinear attitude dynamics, can be appropriately designed according to the eigenvalues. The final control law considers the actuator constraints. The NSHV's closed-loop attitude control system is proved to be locally exponentially stable, and the suboptimality of the control law is analyzed. Numerical simulation demonstrates the effectiveness of the proposed scheme.

2022 ◽  
Author(s):  
Peichao Mi ◽  
Qingxian Wu ◽  
Yuhui Wang

Abstract This paper considers a nonlinear suboptimal control problem for a near-space hypersonic vehicle's (NSHV's) attitude dynamics. The least-square and stable manifold methods first solve an unconstrained approximately optimal control law corresponding to the nonlinear attitude model. Then, to further meet the dynamic performance requirement of the attitude control system, a novel strategy based on the Koopman operator, symplectic geometric theory, and the stable manifold theorem is proposed to approximate the eigenvalues of the closed-loop nonlinear unconstrained approximated optimal control system. The weight matrices in the optimal performance index, which directly determine the output responses of the nonlinear attitude dynamics, can be appropriately designed according to the eigenvalues. The final control law considers the actuator constraints. The NSHV's closed-loop attitude control system is proved to be locally exponentially stable, and the suboptimality of the control law is analyzed. Numerical simulation demonstrates the effectiveness of the proposed scheme.


2019 ◽  
Vol 488 (4) ◽  
pp. 377-382
Author(s):  
V. M. Kulkov ◽  
Yu. G. Egorov ◽  
S. O. Firsyuk ◽  
V. V. Terentyev ◽  
A. O. Shemyakov

The problem of modeling the attitude-control modes of small spacecraft with the use of electromagnetic systems, interacting with the Earths magnetic field is considered. A small spacecraft angular motion mathematical model is developed. A control law for magnetic attitude control system of small spacecraft is formulated. Results of satellite with magnetic attitude control system movement numerical modelling are presented.


2013 ◽  
Vol 462-463 ◽  
pp. 809-814
Author(s):  
Fei Zhao ◽  
Fan Li ◽  
Jian Hui Zhao

A Multiple Independently Targeted Reentry Vehicle (MIRV) is a ballistic missile payload containing several warheads each capable of hitting one of a group of targets. In the process of missile flight control, the release of warheads brings about coupling to the missile attitude control system which will lower the flight stability. In order to solve this problem, a missile attitude controller, which combined the α-order integral inverse system with internal model principle, was presented. Firstly, determine the Post Boost Vehicle (PBV) attitude dynamics model. Then, combine the linearization of attitude dynamics equation with feed-forward decoupling method to implement the attitude decoupling. Finally, a two-degree of freedom (TOF) multivariable internal model controller was set up to optimize the control system performance. Simulation results show that the coupling of attitude control system has been eliminated. Compared with the original system, the internal model controller provides the control system better input-tracking performance, robust stability and interference suppression capacity.


2012 ◽  
Vol 225 ◽  
pp. 464-469 ◽  
Author(s):  
Ban Ying Siang ◽  
Renuganth Varatharajoo

The paper focuses on applying optimal control solutions to combined energy storage and attitude control system (CEACS) under different reference missions. In previous researches, the proportional-integral-derivative (PID) control method, the PID-active force control method and H2 control were tested for CEACS and achieved its mission requirement. However, problems such as the in-orbit system uncertainties affect the PID control performances. Thus, two optimal control methods, H2 and H∞ controls are proposed and tested on CEACS under different mission scenarios to improve its pitch attitude accuracy. Results show that both H2 and H∞ are able to achieve the reference mission requirement even under the influence of uncertainties (non-ideal). Moreover comparison between H2 and H∞ shows the H2 is a better control option for CEACS in terms of disturbance rejection.


2015 ◽  
Vol 798 ◽  
pp. 297-302
Author(s):  
Meirbek Moldabekov ◽  
Suleimen Yelubayev ◽  
Kuanysh Alipbayev ◽  
Anna Sukhenko ◽  
Timur Bopeyev ◽  
...  

The problem of development of the microsatellite attitude control system on the base of reaction wheels positioned along its principal central axes of inertia is considered in this article. As difference from the classical mathematical models describing the microsatellite motion, this article includes the mathematical model of reaction wheel which is controlled by the input voltage of the electric motor. PD-controller is used as the basis for the development of the control law for microsatellite attitude. The stability analysis of the microsatellite attitude control process was carried out with the help of Lyapunov function method. This analysis allowed to prove that obtained attitude control law provides the asymptotic stability of the microsatellite rotational motion. Further, the function of control voltage for the reaction wheel’s electric motor with account of its technical specifications was obtained based on the derived mathematical model of the reaction wheel’s dynamics. The results of performed simulation showed the effectiveness of developed control. Obtained results of the study provide a base for the use of presented approach to the development of attitude control system for microsatellites with various missions.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Wenya Zhou ◽  
Kuilong Yin ◽  
Rui Wang ◽  
Yue-E Wang

Attitude dynamic model of unmanned aerial vehicles (UAVs) is multi-input multioutput (MIMO), strong coupling, and nonlinear. Model uncertainties and external gust disturbances should be considered during designing the attitude control system for UAVs. In this paper, feedback linearization and model reference adaptive control (MRAC) are integrated to design the attitude control system for a fixed wing UAV. First of all, the complicated attitude dynamic model is decoupled into three single-input single-output (SISO) channels by input-output feedback linearization. Secondly, the reference models are determined, respectively, according to the performance indexes of each channel. Subsequently, the adaptive control law is obtained using MRAC theory. In order to demonstrate the performance of attitude control system, the adaptive control law and the proportional-integral-derivative (PID) control law are, respectively, used in the coupling nonlinear simulation model. Simulation results indicate that the system performance indexes including maximum overshoot, settling time (2% error range), and rise time obtained by MRAC are better than those by PID. Moreover, MRAC system has stronger robustness with respect to the model uncertainties and gust disturbance.


2011 ◽  
Vol 128-129 ◽  
pp. 1265-1268 ◽  
Author(s):  
Cai Zheng Xu ◽  
Ting Zhang

In this paper, the model of three-axis dual rotor helicopter is built, through a new motor control algorithm of real-time grouping, the decoupling and independent control of pitch, yaw and roll channels is realized; then the “dead zone” is introduced to design the attitude controller on the basis of the optimal control law which minimize the weighted sum of response time and energy consumption, to achieve optimal control of the attitude of the helicopter; finally, the simulation model of the attitude control system is established in the MATLAB/Simulink environment. Simulation results show the feasibility of the optimal attitude controller design.


2018 ◽  
Vol 14 (10) ◽  
pp. 155014771880593 ◽  
Author(s):  
Hua Song ◽  
Pengqian Han ◽  
Junxiang Zhang ◽  
Chunhua Zhang

This article proposes a fault diagnosis method for closed-loop satellite attitude control systems based on a fuzzy model and parity equation. The fault in a closed-loop system is propagated with the feedback loop, increasing the difficulty of fault diagnosis and isolation. The study uses a Takagi-Sugeno (T-S) fuzzy model and parity equation to diagnose and isolate a fault in a closed-loop satellite attitude control system. A fully decoupled parity equation is designed for the closed-loop satellite attitude control system to generate a residual that is sensitive only to a specific actuator and sensor. A T-S fuzzy model is used to describe the nonlinear closed-loop satellite attitude control system. With the combination of the T-S fuzzy model and fully decoupled parity equation, the fuzzy parity equation (FPE) of the nonlinear system can be obtained. Then this article uses a parameter estimator based on a Kalman filter to identify deviations and scale factor changes from information contained in the residuals generated by the FPE. The actuator and sensor fault detection and isolation simulation of the three-axis stable satellite attitude control system is provided for illustration.


2011 ◽  
Vol 2011 ◽  
pp. 1-20 ◽  
Author(s):  
Chutiphon Pukdeboon

The robust optimal attitude control problem for a flexible spacecraft is considered. Two optimal sliding mode control laws that ensure the exponential convergence of the attitude control system are developed. Integral sliding mode control (ISMC) is applied to combine the first-order sliding mode with optimal control and is used to control quaternion-based spacecraft attitude manoeuvres with external disturbances and an uncertainty inertia matrix. For the optimal control part the state-dependent Riccati equation (SDRE) and optimal Lyapunov techniques are employed to solve the infinite-time nonlinear optimal control problem. The second method of Lyapunov is used to guarantee the stability of the attitude control system under the action of the proposed control laws. An example of multiaxial attitude manoeuvres is presented and simulation results are included to verify the usefulness of the developed controllers.


Sign in / Sign up

Export Citation Format

Share Document