lovozero massif
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 5)

H-INDEX

3
(FIVE YEARS 0)

Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 974
Author(s):  
Julia A. Mikhailova ◽  
Yakov A. Pakhomovsky ◽  
Olga F. Goychuk ◽  
Andrey O. Kalashnikov ◽  
Ayya V. Bazai ◽  
...  

The Lovozero peralkaline massif (Kola Peninsula, Russia) is widely known for its unique mineral diversity, and most of the rare metal minerals are found in pegmatites, which are spatially associated with poikilitic rocks (approximately 5% of the massif volume). In order to determine the reasons for this relationship, we have investigated petrography and the chemical composition of poikilitic rocks as well as the chemical composition of the rock-forming and accessory minerals in these rocks. The differentiation of magmatic melt during the formation of the rocks of the Lovozero massif followed the path: lujavrite → foyaite → urtite (magmatic stage) → pegmatite (hydrothermal stage). Yet, for peralkaline systems, the transition between magmatic melt and hydrothermal solution is gradual. In the case of the initially high content of volatiles in the melt, the differentiation path was probably as follows: lujavrite → foyaite (magmatic stage) → urtitization of foyaite → pegmatite (hydrothermal stage). Poikilitic rocks were formed at the stage of urtitization, and we called them pre-pegmatites. Indeed, the poikilitic rocks have a metasomatic texture and, in terms of chemical composition, correspond to magmatic urtite. The reason for the abundance of rare metal minerals in pegmatites associated with poikilitic rocks is that almost only one nepheline is deposited during urtitization, whereas during the magmatic crystallization of urtite, rare elements form accessory minerals in the rock and are less concentrated in the residual solution.


2020 ◽  
pp. 54-65
Author(s):  
A.V. Lalomov ◽  
◽  
R.M. Chefranov ◽  

Within the Northern periphery of the Lovozero massif (Kola Peninsula), the authors have identified the main formation factors of proximal (near drift) rare-metal loparite placers. They have performed the formalization (numerical evaluation) of factors; developed multiplicative indicators that reflect the placer potential of territories; and assessed the effectiveness of the developed indicators on the reference objects of the Northern periphery of the massif. The developed method allows automating the process of forecasting of placer parameters.


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1070
Author(s):  
Julia A. Mikhailova ◽  
Yakov A. Pakhomovsky ◽  
Taras L. Panikorovskii ◽  
Ayya V. Bazai ◽  
Victor N. Yakovenchuk

The Lovozero Alkaline Massif intruded through the Archean granite-gneiss and Devonian volcaniclastic rocks ca. 360 Ma ago and formed a large laccolith-type body. The lower part of the massif (the Layered complex) is composed of regularly repeating rhythms: melanocratic nepheline syenite (lujavrite, at the top), leucocratic nepheline syenite (foyaite), foidolite (urtite). The upper part of the massif (the Eudialyte complex) is indistinctly layered, and lujavrite enriched with eudialyte-group minerals (EGM) prevails there. In this article, we present the results of a study of the chemical composition and petrography of more than 400 samples of the EGM from the main types of rock of the Lovozero massif. In all types of rock, the EGM form at the late magmatic stage later than alkaline clinopyroxenes and amphiboles or simultaneously with it. When the crystallization of pyroxenes and EGM is simultaneous, the content of ferrous iron in the EGM composition increases. The Mn/Fe ratio in the EGM increases during fractional crystallization from lujavrite to foyaite and urtite. The same process leads to an increase in the modal content of EGM in the foyaite of the Layered complex and to the appearance of primary minerals of the lovozerite group in the foyaite of the Eudialyte complex.


Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 830
Author(s):  
Valentin Nivin

The occurrence of hydrocarbon gases (HCG) in unusually high concentrations for magmatic complexes, in the Lovozero and some other alkaline massifs, is of both geochemical and practical interest. The nature of these gases, despite the long history of research, remains the subject of debate. As an approach to solving this problem, we studied the coupled distribution of occluded HCG and the recognized tracers of various geological processes, such as helium and argon isotopes. The extraction of the gas components trapped in fluid micro-inclusions was carried out by the mechanical crushing of rock and mineral samples. A positive correlation was found between the 3He/4He and CH4/C2H6 ratios, whereas a negative correlation of the latter was found with the 36Ar concentration, which in turn was directly related, in varying degrees, to the content of HCG and most strongly with pentanes. Conjugacy of the processes of the heavier gaseous hydrocarbons, a loss of the deep component of the fluid phase and dilution of it with the atmogenic component was established. In the absence of a correlation between CH4 and 3He, the value of the CH4/3He ratio in the Lovozero gas substantially exceeded the estimates of it in gases of a mantle origin, and mainly corresponded to the crustal values. However, in some samples, a small fraction of mantle methane was allowed. The peculiarities of the relationships between hydrocarbon gases and the isotopes of noble gases indicate a sequential process of abiogenic generation and transformation of HCG at the magmatic and post-magmatic stages during the formation of the Lovozero massif. The obtained results confirm the usefulness of this approach in solving the origin of reduced gases in alkaline igneous systems.


2020 ◽  
Vol 1 ◽  
pp. 3-7
Author(s):  
R. K. Rastsvetaeva ◽  
◽  
N. V. Chkanov ◽  
I. V. Pekov ◽  
D. A. Varlamov ◽  
...  

Minerals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 303 ◽  
Author(s):  
Andrey Zolotarev ◽  
Ekaterina Selivanova ◽  
Sergey Krivovichev ◽  
Yevgeny Savchenko ◽  
Taras Panikorovskii ◽  
...  

The crystal structure of shkatulkalite has been solved from the crystal from the Lovozero alkaline massif, Kola Peninsula, Russia. The mineral is monoclinic, P2/m, a = 5.4638(19), b = 7.161(3), c = 15.573(6) Å, β = 95.750(9)°, V = 606.3(4) Å3, R1 = 0.080 for 1551 unique observed reflections. The crystal structure is based upon the HOH blocks consisting of one octahedral (O) sheet sandwiched between two heteropolyhedral (H) sheets. The blocks are parallel to the (001) plane and are separated from each other by the interlayer space occupied by Na1 atoms and H2O groups. The Na2, Na3, and Ti sites are located within the O sheet. The general formula of shkatulkalite can be written as Na5(Nb1−xTix)2(Ti1−yMn2+y)[Si2O7]2O2(OH)2·nH2O, where x + y = 0.5 and x ≈ y ≈ 0.25 for the sample studied. Shkatulkalite belongs to the seidozerite supergroup and is a member of the lamprophyllite group. The species most closely related to shkatulkalite are vuonnemite and epistolite. The close structural relations and the reported observations of pseudomorphs of shkatulkalite after vuonnemite suggest that, at least in some environments, shkatulkalite may form as a transformation mineral species.


2016 ◽  
Vol 54 (7) ◽  
pp. 633-639
Author(s):  
V. N. Ermolaeva ◽  
A. V. Mikhailova ◽  
L. N. Kogarko ◽  
G. M. Kolesov

Sign in / Sign up

Export Citation Format

Share Document