laser beam intensity
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 19)

H-INDEX

12
(FIVE YEARS 2)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 591
Author(s):  
Mikhael El-Khoury ◽  
Bogdan Voisiat ◽  
Tim Kunze ◽  
Andrés Fabián Lasagni

Uniform periodic microstructure formation over large areas is generally challenging in Direct Laser Interference Patterning (DLIP) due to the Gaussian laser beam intensity distribution inherent to most commercial laser sources. In this work, a diffractive fundamental beam-mode shaper (FBS) element is implemented in a four-beam DLIP optical setup to generate a square-shaped top-hat intensity distribution in the interference volume. The interference patterns produced by a standard configuration and the developed setup are measured and compared. In particular, the impact of both laser intensity distributions on process throughput as well as fill-factor is investigated by measuring the resulting microstructure height with height error over the structured surface. It is demonstrated that by utilizing top-hat-shaped interference patterns, it is possible to produce on average 44.8% deeper structures with up to 60% higher homogeneity at the same throughput. Moreover, the presented approach allows the production of microstructures with comparable height and homogeneity compared to the Gaussian intensity distribution with increased throughput of 53%.


2021 ◽  
Author(s):  
Raghul Manosh Kumar ◽  
SUBODH ADHIKARI ◽  
Oleksandr Bibik ◽  
Benjamin Emerson ◽  
Christopher Fugger ◽  
...  

2021 ◽  
Vol 8 (12) ◽  
Author(s):  
Luke A. Barlow ◽  
Michael Pittman ◽  
Anthony Butcher ◽  
David M. Martill ◽  
Thomas G. Kaye

Laser-stimulated fluorescence (LSF) has seen increased use in palaeontological investigations in recent years. The method uses the high flux of laser light of visible wavelengths to reveal details sometimes missed by traditional long-wave ultraviolet (UV) methods using a lamp. In this study, we compare the results of LSF with UV-A-generated fluorescence on a range of fossils from the Upper Jurassic Solnhofen Limestone Konservat-Lagerstätte of Bavaria, Germany. The methodology follows previous protocols of LSF with modifications made to enhance laser beam intensity, namely keeping the laser at a constant distance from the specimen, using a camera track. Our experiments show that along with making surface details more vivid than UV-A or revealing them for the first time, LSF has the additional value of revealing shallow subsurface specimen detail. Fossil decapods from the Solnhofen Limestone reveal full body outlines, even under the matrix, along with details of segmentation within the appendages such as limbs and antennae. The results indicate that LSF can be used on invertebrate fossils along with vertebrates and may often surpass the information provided by traditional UV methods.


JETP Letters ◽  
2021 ◽  
Vol 114 (9) ◽  
pp. 524-527
Author(s):  
A. A. Bobrov ◽  
S. A. Saakyan ◽  
V. A. Sautenkov ◽  
B. B. Zelener

The dipole–dipole broadening of the spectrum of the selective reflection of intense resonance light from the interface between a transparent dielectric and a gas of the natural mixture of Rb isotopes has been studied experimentally. The case of a high gas density where the Doppler broadening can be neglected has been investigated. It has been shown that dipole–dipole broadening is reduced with increasing the number density of excited atoms. When the laser beam intensity is much higher than the saturation intensity of a resonance transition, a significant broadening due to the very high laser beam intensity has not been observed in the reflection spectrum from the transparent dielectric/gas interface. The observed intensity dependence of the spectral width has been explained by the quenching collisions of the excited atoms with the interface.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3720
Author(s):  
Mi-Yun Jeong ◽  
Hyeon-Jong Choi ◽  
Keumcheol Kwak ◽  
Younghun Yu

We report that polymerization makes a robust, practically applicable multifunctional optical device with a continuous wavelength tunable over 500 nm spectral range using UV-polymerizable cholesteric liquid crystals (CLCs). It can be used as a circular polarizer generating an extremely high degree of circularly polarized light with |g| = 1.85~2.00. It can also be used for optical notch filters, bandwidth-variable (from ~28 nm to ~93 nm) bandpass filters, mirrors, and intensity-variable beam splitters. Furthermore, this CLC device shows excellent stability owing to the polymerization of CLC cells. Its performance remains constant for a long time (~2 years) after a high-temperature exposure (170 °C for 1 h) and an extremely high laser beam intensity exposure (~143 W/cm2 of CW 532 nm diode laser and ~2.98 MW/cm2 of Nd: YAG pulse laser operation for two hours, respectively). The optical properties of polymerized CLC were theoretically analyzed by Berreman’s 4 × 4 matrix method. The characteristics of this device were significantly improved by introducing an anti-reflection layer on the device. This wavelength-tunable and multifunctional device could dramatically increase optical research efficiency in various spectroscopic works. It could be applied to many instruments using visible and near-infrared wavelengths.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 677
Author(s):  
Giedrius Sinkevicius ◽  
Algirdas Baskys ◽  
Gintaras Tamošauskas

Pockels cells used as electro-optical modulators in high-power high-repetition lasers suffer from piezoelectric ringing phenomenon due to piezoelectric properties of the crystals. A new method for active suppression of the piezoelectric ringing in Pockels cells is proposed in this work. It is based on symmetric control of Pockels cell using burst of short positive and negative voltage pulses with the same amplitude instead of a single long pulse for light polarization modulation. Rising and falling edges of pulses of the burst induce symmetrical acoustic waves of the opposite phase and cancel the piezoelectric ringing of the crystal. A new high voltage driver capable of generating positive and negative pulses of tens of nanoseconds of 3 kV magnitude was developed for this purpose. The amplitude of laser beam intensity pulsations caused by the piezoelectric ringing can be reduced up to five times when active suppression method is used for the deuterated potassium dihydrogen phosphate (DKDP) Pockels cell. Such crystals like DKDP, LiNbO3, and LiTaO3 may benefit from the proposed method and find new use in lasers of high repetition rate where piezoelectric ringing is a major limiting factor.


2021 ◽  
Author(s):  
Xingkun Xu ◽  
Joey Voermans ◽  
Alexander Babanin ◽  
Hongyu Ma ◽  
Changlong Guan

<p>As one of typical elements in the air-sea boundary layer, sea spray is expected to mediate energy flux exchange in the air and ocean boundary layers, and therefore it is of crucial importance to the meteorology, oceanology, and regional climatology. In addition, the spray is also considered as one of the missing physical mechanisms in atmospheric and oceanic numerical models. Hence, it is necessary to accurately predict how much sea spray is produced at the air-sea boundary layer. Though spray has been studied for a number of decades, large uncertainties still linger. For instance, uncertainties in qualifying how much spray is produced on the sea surface reach 10<sup>6</sup> times. This is because of the rarity of spray observations in the field, especially under strong wind condition.</p><p>To give a reliable spray production model, scientists tried to employ laser-based facilities in the field to observe sea spray by interpreting infrared laser-beam intensity into sea spray volume flux over the water surface. Hence, in the current study, we collected datasets in the field measured by laser-based facilities on the North-West Shelf of the coast of Western Australia, thereafter, further analyzed, and calibrated them through a series of academic, statistical, and physical analysis to ensure the data quality. After that, assuming the existence of spray drops in the air-sea layer would attenuate the infrared laser-beam intensity, the weakening extends of laser-beam intensity is used to estimate the volume flux of sea spray above the ocean surface at winds speed ranging from light to extreme during the passage of Tropical Cyclone Olwyn (2015). It should be noted that our observations of sea spray volume flux are within the ranges of existing models and are consistent with the model proposed by Andreas (1992) in both trend and magnitude.</p><p>Using the field observations of the sea spray volume flux, a sea spray volume flux model can be constructed. Given that sea spray droplets are generated at the ocean surface through breaking waves and wind shear, the sea spray volume flux is expected to be dominated by the properties of the local wind and wave field. For physical consistency across the wide range of scales observed in the field and laboratory, non-dimensional parameters (i.e., non-dimensional wind speed and the mean wave steepness) were adopted to construct the model. Consequently, a power-law non-dimensional spray volumetric flux model is suggested based on the estimation of the spray volume flux. It should be noted that one sensitive test was conducted to substantiate the inclusion of wave breaking process, here simply included with the mean wave steepness, improves spray volume flux parameterization.</p>


2021 ◽  
Author(s):  
Mikhael El-Khoury ◽  
Bogdan Voisiat ◽  
Tim Kunze ◽  
Andrés Fabián Lasagni

Abstract Uniform periodic microstructures formation over large areas is generally challenging in Direct Laser Interference Patterning (DLIP) due to the Gaussian laser beam intensity distribution inherent to most commercial laser sources. In this work, a diffractive fundamental beam-mode shaper (FBS) element is implemented in a four-beam DLIP optical setup to generate a square-shaped top-hat intensity distribution in the interference volume. The interference patterns produced by a standard configuration and the developed setup are measured and compared. In particular, the impact of both laser intensity distributions on process throughput as well as fill-factor is investigated by measuring the resulting microstructure height with height error over the structured surface. It is demonstrated that by utilizing top-hat-shaped interference patterns, it is possible to produce on average 44.8 % deeper structures with up to 60 % higher homogeneity at the same throughput. Moreover, the presented approach allows the production of microstructures with comparable height and homogeneity compared to the Gaussian intensity distribution with increased throughput of 53%.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Seok-Ho Maeng ◽  
Hakju Lee ◽  
Min Soo Park ◽  
Suhyun Park ◽  
Jaeki Jeong ◽  
...  

AbstractWe report the extraction of silicon via a carbothermal reduction process using a CO2 laser beam as a heat source. The surface of a mixture of silica and carbon black powder became brown after laser beam irradiation for a few tens of seconds, and clear peaks of crystalline silicon were observed by Raman shift measurements, confirming the successful carbothermal reduction of silica. The influence of process parameters, including the laser beam intensity, radiation time, nitrogen gas flow in a reaction chamber, and the molar ratios of silica/carbon black of the mixture, on the carbothermal reduction process is explained in detail.


Sign in / Sign up

Export Citation Format

Share Document