image learning
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 25)

H-INDEX

8
(FIVE YEARS 4)

2021 ◽  
Vol 12 (1) ◽  
pp. 123
Author(s):  
Gwang-ho Yun ◽  
Sang-jin Oh ◽  
Sung-chul Shin

Welding defects must be inspected to verify that the welds meet the requirements of ship welded joints, and in welding defect inspection, among nondestructive inspections, radiographic inspection is widely applied during the production process. To perform nondestructive inspection, the completed weldment must be transported to the nondestructive inspection station, which is expensive; consequently, automation of welding defect detection is required. Recently, at several processing sites of companies, continuous attempts are being made to combine deep learning to detect defects more accurately. Preprocessing for welding defects in radiographic inspection images should be prioritized to automatically detect welding defects using deep learning during radiographic nondestructive inspection. In this study, by analyzing the pixel values, we developed an image preprocessing method that can integrate the defect features. After maximizing the contrast between the defect and background in radiographic through CLAHE (contrast-limited adaptive histogram equalization), denoising (noise removal), thresholding (threshold processing), and concatenation were sequentially performed. The improvement in detection performance due to preprocessing was verified by comparing the results of the application of the algorithm on raw images, typical preprocessed images, and preprocessed images. The mAP for the training data and test data was 84.9% and 51.2% for the preprocessed image learning model, whereas 82.0% and 43.5% for the typical preprocessed image learning model and 78.0%, 40.8% for the raw image learning model. Object detection algorithm technology is developed every year, and the mAP is improving by approximately 3% to 10%. This study achieved a comparable performance improvement by only preprocessing with data.


2021 ◽  
Vol 10 (2) ◽  
pp. 16-21
Author(s):  
Yoon Seon Lee ◽  
Ju Hong Lee ◽  
Bum Ghi Choi ◽  
Jae Won Song

The Analyst ◽  
2021 ◽  
Vol 146 (19) ◽  
pp. 5942-5950
Author(s):  
Qiannan Duan ◽  
Jianchao Lee ◽  
Jiayuan Chen ◽  
Yunjin Feng ◽  
Run Luo ◽  
...  

Artificial intelligence deals with complex scientific problems using its favorite images.


2020 ◽  
Vol 280 ◽  
pp. 115875
Author(s):  
Weicong Kong ◽  
Youwei Jia ◽  
Zhao Yang Dong ◽  
Ke Meng ◽  
Songjian Chai

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Chi-Tung Cheng ◽  
Chih-Chi Chen ◽  
Chih-Yuan Fu ◽  
Chung-Hsien Chaou ◽  
Yu-Tung Wu ◽  
...  

Abstract Background With recent transformations in medical education, the integration of technology to improve medical students’ abilities has become feasible. Artificial intelligence (AI) has impacted several aspects of healthcare. However, few studies have focused on medical education. We performed an AI-assisted education study and confirmed that AI can accelerate trainees’ medical image learning. Materials We developed an AI-based medical image learning system to highlight hip fracture on a plain pelvic film. Thirty medical students were divided into a conventional (CL) group and an AI-assisted learning (AIL) group. In the CL group, the participants received a prelearning test and a postlearning test. In the AIL group, the participants received another test with AI-assisted education before the postlearning test. Then, we analyzed changes in diagnostic accuracy. Results The prelearning performance was comparable in both groups. In the CL group, postlearning accuracy (78.66 ± 14.53) was higher than prelearning accuracy (75.86 ± 11.36) with no significant difference (p = .264). The AIL group showed remarkable improvement. The WithAI score (88.87 ± 5.51) was significantly higher than the prelearning score (75.73 ± 10.58, p < 0.01). Moreover, the postlearning score (84.93 ± 14.53) was better than the prelearning score (p < 0.01). The increase in accuracy was significantly higher in the AIL group than in the CL group. Conclusion The study demonstrated the viability of AI for augmenting medical education. Integrating AI into medical education requires dynamic collaboration from research, clinical, and educational perspectives.


Sign in / Sign up

Export Citation Format

Share Document