scholarly journals Image Preprocessing Method in Radiographic Inspection for Automatic Detection of Ship Welding Defects

2021 ◽  
Vol 12 (1) ◽  
pp. 123
Author(s):  
Gwang-ho Yun ◽  
Sang-jin Oh ◽  
Sung-chul Shin

Welding defects must be inspected to verify that the welds meet the requirements of ship welded joints, and in welding defect inspection, among nondestructive inspections, radiographic inspection is widely applied during the production process. To perform nondestructive inspection, the completed weldment must be transported to the nondestructive inspection station, which is expensive; consequently, automation of welding defect detection is required. Recently, at several processing sites of companies, continuous attempts are being made to combine deep learning to detect defects more accurately. Preprocessing for welding defects in radiographic inspection images should be prioritized to automatically detect welding defects using deep learning during radiographic nondestructive inspection. In this study, by analyzing the pixel values, we developed an image preprocessing method that can integrate the defect features. After maximizing the contrast between the defect and background in radiographic through CLAHE (contrast-limited adaptive histogram equalization), denoising (noise removal), thresholding (threshold processing), and concatenation were sequentially performed. The improvement in detection performance due to preprocessing was verified by comparing the results of the application of the algorithm on raw images, typical preprocessed images, and preprocessed images. The mAP for the training data and test data was 84.9% and 51.2% for the preprocessed image learning model, whereas 82.0% and 43.5% for the typical preprocessed image learning model and 78.0%, 40.8% for the raw image learning model. Object detection algorithm technology is developed every year, and the mAP is improving by approximately 3% to 10%. This study achieved a comparable performance improvement by only preprocessing with data.

Author(s):  
Morteza Heidari ◽  
Seyedehnafiseh Mirniaharikandehei ◽  
Abolfazl Zargari Khuzani ◽  
Gopichandh Danala ◽  
Yuchen Qiu ◽  
...  

2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


2021 ◽  
Vol 296 ◽  
pp. 126564
Author(s):  
Md Alamgir Hossain ◽  
Ripon K. Chakrabortty ◽  
Sondoss Elsawah ◽  
Michael J. Ryan

Sign in / Sign up

Export Citation Format

Share Document