smos satellite
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 6)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Oyudari Vova ◽  
Pavel Groisman ◽  
Martin Kappas ◽  
Tsolmon Renchin ◽  
Steven Fassnacht

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Boguslaw Usowicz ◽  
Mateusz Lukowski ◽  
Jerzy Lipiec

Abstract The assessment of water resources in soil is important in understanding the water cycle in the natural environment and the processes of water exchange between the soil and the atmosphere. The main objective of the study was to assess water resources (in 2010–2013) in the topsoil from satellite (SMOS) and in situ (ground) measurements using the SWEX_PD approach (Soil Water EXtent at Penetration Depth). The SWEX_PD is a result of multiplying soil moisture (SM) and radiation penetration depth (PD) for each pixel derived from the SMOS satellite. The PD, being a manifold of the wavelength λ0 equal to 21 cm, was determined from the weekly SMOS L2 measurement data based on the real and imaginary part of complex dielectric constant. The SWEX_PD data were compared with soil water resources (WR) calculated from the sum of components derived from multiplication of soil moisture (SM) and layer thickness in nine agrometeorological stations located along the eastern border of Poland. Each study site consisted of seven neighbouring Discrete Global Grid pixels (nodes spaced at 15 km) including the central ones with agrometeorological stations. The study area included different types of soils and land covers. The agreement between the water resources obtained from the SWEX_PD and ground measurements (WR) was quantified using classical statistics and Bland–Altman's plots. Calibrated Layer Thickness (CLT = dbias) from 8 to 28 cm was obtained with a low values of bias (close to zero), limits of agreements, and confidence intervals for all the SWEX_PD, depending on the pixel location. The results revealed that the use of the SWEX_PD for assessing soil water resources is the most reliable approach in the study area. Additionally, the data from Bland–Altman plots and the equation proposed in these studies allowed calculation of the Equivalent Layer Thickness (ELT = $$d_{ei}^{SWEX}$$ d ei SWEX ), which corresponds to the water resources derived from the SMOS satellite at the same time as (SM) measurements performed in the agrometeorological stations. The ranges of the mean, standard deviation, minimum, maximum, and coefficient of variation (CV) of ELT among all pixels and stations were 8.28–28.7 cm, 3.27–12.66 cm, 3.03–10.87 cm, 19.23–94.97 cm, and 24.72–98.79%, respectively. The ranges of the characteristics depended on environmental conditions and their means were close to the values of the calibrated layer thickness. The impacts of soil texture, organic matter, vegetation, and their interactive effects on the differentiation and agreement of soil water resources obtained from SWEX_PD vs. data from ground measurements in the study area are discussed. Further studies are required to address the impact of the environmental factors to improve the assessment of soil water resources based on satellite SM products (retrievals).


Author(s):  
Colin Lewis-Beck ◽  
Zhengyuan Zhu ◽  
Victoria Walker ◽  
Brian Hornbuckle

2019 ◽  
Vol 55 (9) ◽  
pp. 996-1004
Author(s):  
D. A. Boyarskii ◽  
A. N. Romanov ◽  
I. V. Khvostov ◽  
V. V. Tikhonov ◽  
E. A. Sharkov

2019 ◽  
Vol 11 (11) ◽  
pp. 1280 ◽  
Author(s):  
Bogusław Usowicz ◽  
Jerzy Lipiec ◽  
Mateusz Lukowski

Soil moisture (SM) data play an important role in agriculture, hydrology, and climate sciences. In this study, we examined the spatial-temporal variability of soil moisture using Soil Moisture Ocean Salinity (SMOS) satellite measurements for Poland from a five-year period (2010–2014). SMOS L2 v. 551 datasets (latitudinal rectangle 1600 × 840 km, centered in Poland) averaged for quarterly (three months corresponding to winter, spring, summer, and autumn) and yearly values were used. The results were analysed with the use of classical statistics and geostatistics (using semivariograms) to acquire information about the nature of anisotropy and the lengths and directions of spatial dependences. The minimum (close to zero) and maximum soil moisture values covered the 0.5 m3 m−3 range. In particular quarters, average soil moisture did not exceed 0.2 m3 m−3 and did not drop below 0.12 m3 m−3; the corresponding values in the study years were 0.171 m3 m−3 and 0.128 m3 m−3. The highest variability of SM occurred generally in winter (coefficient of variation, CV, up to 40%) and the lowest value was recorded in spring (around 23%). The average CV for all years was 32%. The quarterly maximum (max) soil moisture contents were well positively correlated with the average soil moisture contents (R2 = 0.63). Most of the soil moisture distributions (histograms) were close to normal distribution and asymmetric data were transformed with the square root to facilitate geostatistical analysis. Isotropic and anisotropic empirical semivariograms were constructed and the theoretical exponential models were well fitted (R2 > 0.9). In general, the structural dependence of the semivariance was strong and moderate. The nugget (C0) values slightly deceased with increasing soil moisture while the sills (C0 + C) increased. The effective ranges of spatial dependence (A) were between 1° and 4° (110–440 km of linear distance). Generally, the ranges were greater for drier than moist soils. Anisotropy of the SM distribution exhibited different orientation with predominance from north-west to south-east in winter and spring and changed for from north-east to south-west or from north to south in the other seasons. The fractal dimension values showed that the distribution of the soil moisture pattern was less diverse (smoother) in the winter and spring, compared to that in the summer and autumn. The soil moisture maps showed occurrence of wet areas (soil moisture > 0.25 m3 m−3) in the north-eastern, south-eastern and western parts and dry areas (soil moisture < 0.05 m3 m−3) mainly in the central part (oriented towards the south) of Poland. The spatial distribution of SM was attributed to soil texture patterns and associated with water holding capacity and permeability. The results will help undertake appropriate steps to minimize susceptibility to drought and flooding in different regions of Poland.


Author(s):  
D. A. Boyarskii ◽  
A. N. Romanov ◽  
I. V. Khvostov ◽  
V. V. Tikhonov ◽  
E. A. Sharkov

The results of a comparative analysis of the brightness temperatures determined from the SMOS satellite and the corresponding depths of soil freezing, measured at weather stations located at the test sites of the Kulunda Plain, are presented. Based on the daily satellite measurement of brightness temperature, the effect of soil freezing on the microwave radiation of the underlying surface was studied. A theoretical calculation of the dependence of soil brightness temperature on the depth of freezing is performed with the model of microwave radiation of a plane-layered inhomogeneous non-isothermal medium. The real parameters of the Kulunda plain soil as well as the climatic characteristics of the sites under study, obtained from the weather stations for the same period, were used as the input parameters of the model. The analysis of satellite, field and model data showed that the evaluation of the depth of soil freezing with satellite microwave radiometry is limited by the need to conduct the contact measurements of physical properties of soil in the areas, for which the SMOS product on the brightness temperature is given.


Author(s):  
Roberto Sabia ◽  
Estrella Olmedo ◽  
Antonio Turiel ◽  
Justino Martinez ◽  
A. Alvera-Azcarate

2017 ◽  
Vol 11 (4) ◽  
pp. 1607-1623 ◽  
Author(s):  
Robert Ricker ◽  
Stefan Hendricks ◽  
Lars Kaleschke ◽  
Xiangshan Tian-Kunze ◽  
Jennifer King ◽  
...  

Abstract. Sea-ice thickness on a global scale is derived from different satellite sensors using independent retrieval methods. Due to the sensor and orbit characteristics, such satellite retrievals differ in spatial and temporal resolution as well as in the sensitivity to certain sea-ice types and thickness ranges. Satellite altimeters, such as CryoSat-2 (CS2), sense the height of the ice surface above the sea level, which can be converted into sea-ice thickness. Relative uncertainties associated with this method are large over thin ice regimes. Another retrieval method is based on the evaluation of surface brightness temperature (TB) in L-band microwave frequencies (1.4 GHz) with a thickness-dependent emission model, as measured by the Soil Moisture and Ocean Salinity (SMOS) satellite. While the radiometer-based method looses sensitivity for thick sea ice (> 1 m), relative uncertainties over thin ice are significantly smaller than for the altimetry-based retrievals. In addition, the SMOS product provides global sea-ice coverage on a daily basis unlike the altimeter data. This study presents the first merged product of complementary weekly Arctic sea-ice thickness data records from the CS2 altimeter and SMOS radiometer. We use two merging approaches: a weighted mean (WM) and an optimal interpolation (OI) scheme. While the weighted mean leaves gaps between CS2 orbits, OI is used to produce weekly Arctic-wide sea-ice thickness fields. The benefit of the data merging is shown by a comparison with airborne electromagnetic (AEM) induction sounding measurements. When compared to airborne thickness data in the Barents Sea, the merged product has a root mean square deviation (RMSD) of about 0.7 m less than the CS2 product and therefore demonstrates the capability to enhance the CS2 product in thin ice regimes. However, in mixed first-year (FYI) and multiyear (MYI) ice regimes as in the Beaufort Sea, the CS2 retrieval shows the lowest bias.


Sign in / Sign up

Export Citation Format

Share Document