soil moisture index
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 25)

H-INDEX

12
(FIVE YEARS 2)

2022 ◽  
Vol 9 (1) ◽  
pp. 1-12
Author(s):  
Almira Harwidya Irenasari ◽  
S Soemarno

Water is one of the limiting factors in the growth of coffee plants. If plants experience a lack of water, it can inhibit plant growth and, at a critical level, can lead to drought stress and plant damages. The available soil water to plants can be estimated from the level of soil moisture index. The monitoring of soil moisture status can be used in improving the management of coffee plantations. Soil Moisture Index (SMI) is a method that can be used to estimate the level of soil moisture using remote sensing technology using NDVI and LST values. The purpose of this study was to analyze the status and distribution of soil moisture at the coffee plantation; analyze the relationship between vegetation index and soil moisture; and analyzed the relationship between soil moisture status using the SMI method and soil moisture measured in coffee plantations. Results showed that the soil moisture index obtained from Landsat 8 OLI/TIRS image processing had an average value of 0.60. The average soil moisture index at the study site is 1.05. Soil moisture index from the Landsat 8 OLI/TIRS image has a significant positive effect on soil moisture at the study site (y = 7.4996x – 3.4789; R2 = 0.7146**). It is suggested that the SMI method can be used to estimate soil moisture in the coffee plantation.


2021 ◽  
Author(s):  
Oyudari Vova ◽  
Pavel Groisman ◽  
Martin Kappas ◽  
Tsolmon Renchin ◽  
Steven Fassnacht

2021 ◽  
Vol 2114 (1) ◽  
pp. 012091
Author(s):  
Ali Sadeq Bahet ◽  
Mutasim Ibrahim Malik

Abstract The groundwater in Iraq has been studied for the need for it due to the shortage of surface water levels.The vegetation cover index, the soil moisture index, and the surface water index were used to detect the presence of groundwater in Wasit Governorate, Iraq. Those indicators that appear on the ground cover and indicate the presence of groundwater in the study area were compared with the coordinates of wells underground water. The results were identical with information obtained from the Ministry of Water Resources.


2021 ◽  
Vol 22 (9) ◽  
Author(s):  
Aqmal Nur Jihad ◽  
Budiadi Budiadi ◽  
Widiyatno Widiyatno

Abstract. Growth response of Dendrocalamus asper on elevational variation and intra-clump spacing management. 2021. Title. Biodiversitas 22: 3801-3810. Dendrocalamus asper (Schult. Schult. F.) Backer Ex. K. Heyne is a well-known commodity classified as a non-timber forest product (NTFP) to substitute wood-based products in the future. While bamboo is widely distributed in various habitats, and it could impact growth performance and quality. Nevertheless, the development of bamboo research on the upstream level is quite rare, specifically for clumping bamboo species. Therefore, our study aimed to reveal the performance in elevational variation and to discover the intra-clump spacing and diameter relationship. The elevational variation was divided into three levels, which were lower, middle, and higher levels. Each elevation was established in 9 plots with parameters observed were culm diameter at breast height (DBH), culm height (H), and culm volume (V) of D. asper. The intra-clump spacing was used to assess the relationship between the clump density and diameter growth. The research is complemented with in-depth interviews to explore the traditional silvicultural practices of Dendrocalamus asper and spatial analysis to generate land surface temperature and soil moisture index. The result showed that there is no effect (P > 0.05) of elevational variation to D. asper growth and development, while the availability of intra-clump spacing showed a significant result (P < 0.05) on the culm DBH of D, asper. Furthermore, our result suggests a wider intra-clump spacing (0.4-0.6 m2) is more recommended than a narrow intra-clump spacing for optimal culm diameter growth. Additionally, bamboo plantation was still less managed and utilized. Therefore, improving the productivity of D. asper by maintaining plantation, i.e., fertilizing, managing spacing among clump bamboo, and harvesting to achieve sustainable development of the bamboo plantation is useful.


2021 ◽  
Vol 14 (2) ◽  
pp. 1143
Author(s):  
Karla Campagnolo ◽  
Sofia Melo Vasconcellos ◽  
Vinicius Santanna Castiglio ◽  
Marina Refatti Fagundes ◽  
Masato Kobiyama

A representação do processo precipitação-vazão por meio de modelos hidrológicos conceituais visa quantificar o volume escoado em uma bacia como consequência de uma determinada precipitação. Aliados a eles, os índices têm sido uma ferramenta útil para quantificar eventos extremos, como o Soil Moisture Index (TMI) que foi formulado a partir do modelo hidrológico Tank Model. Desta forma, o objetivo deste trabalho foi aplicar o Tank Model para a bacia do rio Perdizes, em Cambará do Sul (RS), e avaliar o desempenho do TMI para prever a ocorrência de cheias, limiar este utilizado para o fechamento da Trilha do rio do Boi, no Parque Nacional de Aparados da Serra (PNAS). Os dados utilizados na simulação foram obtidos pelas estações meteorológica e fluviométrica instaladas na bacia. Após a calibração e validação de três séries históricas no Tank Model, os valores obtidos do TMI foram comparados com os dias que a Trilha foi fechada, a partir de altos níveis registrados no rio Perdizes. O TMI demonstrou que o nível utilizado para fechar a Trilha do rio do Boi correspondeu a cheias em 72% das vezes. Portanto, o TMI mostrou bom desempenho ao indicar a ocorrência de cheias na área estudada, sendo uma ferramenta útil para a tomada de decisões na gestão do PNAS.  Application of the Tank Model as a Management Tool in the Perdizes River Basin - Cambará do Sul/RS.ABSTRACTThe representation of the rainfall-runoff process by means of conceptual hydrological models aims to quantify the volume drained in a basin as result of a specific precipitation. Allied to them, the indices have been a useful tool to quantify extreme events, such as the Tank Moisture Index (TMI) which was formulated from the Tank Model. Thus, the objective of this work was to apply the Tank Model to the Perdizes river basin, in Cambará do Sul (RS), and to evaluate the performance of the TMI to predict the occurrence of floods, the threshold used for the closure of the Rio do Boi trail, in the Aparados da Serra National Park (PNAS). The data used in the simulation were obtained at the meteorological and fluviometric stations installed in the basin. After the calibration and validation of three historical series in the Tank Model, the values obtained in the TMI were compared with the days when the Trail was closed, from high levels recorded in the Perdizes river. The average TMI values demonstrated that the level used to close the Rio do Boi Trail corresponded to floods 72% of the time, and the median, 75%. Therefore, the TMI showed good performance in indicating the occurrence of floods in the study area, being a useful tool for decision making in the PNAS management.Keywords: Tank Moisture Index, trail closure, Aparados da Serra National Park.


Author(s):  
Mayank Suman ◽  
Rajib Maity

Abstract Most of the existing studies on meteorological drought suggest more intense and frequent drought events due to changing climate. However, basin-scale assessment of future agricultural drought is lacking due to many reasons. In this study, the intensity and frequency of future agricultural drought (characterized by the Standardized Soil Moisture Index, SSMI) for 226 sub-basins across India are analyzed, and vulnerable basins are identified. The prediction of the future agricultural drought status is achieved using the wavelet-based drought temporal consequence modeling of meteorological drought and the best performing bias-corrected Coordinated Regional Downscaling Experiment (CORDEX) simulations, selected by Multi-Criteria Decision-Making frameworks. This study reveals a geographically contrasting change in future agricultural drought that indicates more intense agricultural drought in north, north-east, and central India as compared south India. The area under drought is also expected to increase, and about 20 and 50% of the Indian mainland are expected to suffer from extreme (SSMI ≤ −2) and moderate (SSMI ≤ −1) agricultural drought conditions by the end of this century. Sub-basins lying in north and central India are expected to have a longer time under drought conditions. Thus, the findings of this study will be useful for future planning and preparedness against agricultural productivity.


Author(s):  
Willemijn Vroege ◽  
Janic Bucheli ◽  
Tobias Dalhaus ◽  
Martin Hirschi ◽  
Robert Finger

Abstract Crop producers face significant and increasing drought risks. We evaluate whether insurances based on globally and freely available satellite-retrieved soil moisture data can reduce farms’ financial drought risk exposure. We design farm individual soil moisture index insurances for wheat, maize and rapeseed production using a case study for Eastern Germany. We find that the satellite-retrieved soil moisture index insurances significantly decrease risk exposure for these crops compared to the situation where production is not insured. The satellite-retrieved index also outperforms one based on soil moisture estimates derived from meteorological measurements at ground stations. Important implications for insurers and policy makers are that they could and should develop better suited insurances. Available satellite-retrieved data can be used to increase farmers’ resilience in a changing climate.


2021 ◽  
Vol 2 (2) ◽  
Author(s):  
B C Kusre ◽  
P K Bora ◽  
Deependra Rai

Soil moisture and soil temperature are two important parameters that have a wider implication on crop production. The drop of soil moisture and temperature has an impact involving climate, vegetation and drought. The presence of soil moisture does not ensure its availability to a crop but the force by which water is held by soil particle is important. The amount of work done to extract soil moisture is generally expressed as stress. It is necessary to understand the extent of stress for proper water resources management. The soil moisture index (SMI) is a criterion that denotes the extent of stress experienced by a crop. The temperature also has an impact on germination and production. In the present study, we developed a SMI for different locations in Sikkim. The index ranges from +5 to -5. The negative index indicates extreme stress. The study indicated during winter the index goes beyond-3. Considering wilting point stress as 500 and 700 kPa. The soil temperature was also observed to fall below 15 C. Further, it was observed that soil temperature and moisture are strongly correlated to each other. The SMI can play an important role in adopting suitable water management practices for improved crop production.


Sign in / Sign up

Export Citation Format

Share Document