scholarly journals Flexible Krylov Methods for Edge Enhancement in Imaging

2021 ◽  
Vol 7 (10) ◽  
pp. 216
Author(s):  
Silvia Gazzola ◽  
Sebastian James Scott ◽  
Alastair Spence

Many successful variational regularization methods employed to solve linear inverse problems in imaging applications (such as image deblurring, image inpainting, and computed tomography) aim at enhancing edges in the solution, and often involve non-smooth regularization terms (e.g., total variation). Such regularization methods can be treated as iteratively reweighted least squares problems (IRLS), which are usually solved by the repeated application of a Krylov projection method. This approach gives rise to an inner–outer iterative scheme where the outer iterations update the weights and the inner iterations solve a least squares problem with fixed weights. Recently, flexible or generalized Krylov solvers, which avoid inner–outer iterations by incorporating iteration-dependent weights within a single approximation subspace for the solution, have been devised to efficiently handle IRLS problems. Indeed, substantial computational savings are generally possible by avoiding the repeated application of a traditional Krylov solver. This paper aims to extend the available flexible Krylov algorithms in order to handle a variety of edge-enhancing regularization terms, with computationally convenient adaptive regularization parameter choice. In order to tackle both square and rectangular linear systems, flexible Krylov methods based on the so-called flexible Golub–Kahan decomposition are considered. Some theoretical results are presented (including a convergence proof) and numerical comparisons with other edge-enhancing solvers show that the new methods compute solutions of similar or better quality, with increased speedup.

2019 ◽  
Vol 67 (3) ◽  
pp. 219-227
Author(s):  
Youhong Xiao ◽  
Qingqing Song ◽  
Shaowei Li ◽  
Guoxue Lv ◽  
Zhenlin Ji

In noise source identification based on the inverse boundary element method (IBEM), the boundary vibration velocity is predicted based on the field pressure through a transfer matrix of the vibration velocity and field pressure established on the Helmholtz integral equation. Because the matrix is often ill-posed, it needs to be regularized before reconstructing the vibration velocity. Two regularization methods and two methods of selecting the regularization parameter are investigated through the simulation analysis of a pulsating sphere. The result of transfer matrix regularization is further verified through the reconstruction of the vibration of an aluminum plate. Additionally, to reduce the large errors at some frequencies in the reconstruction result, increasing the number of measuring points is more effective than reducing the distance between the measurement plane and the sound source.


2006 ◽  
Vol 6 (6) ◽  
pp. 13307-13321
Author(s):  
S. Ceccherini ◽  
C. Belotti ◽  
B. Carli ◽  
P. Raspollini ◽  
M. Ridolfi

Abstract. The retrieval of concentration vertical profiles of atmospheric constituents from spectroscopic measurements is often an ill-conditioned problem and regularization methods are frequently used to improve its stability. Recently a new method, that provides a good compromise between precision and vertical resolution, was proposed to determine analytically the value of the regularization parameter. This method is applied for the first time to real measurements with its implementation in the operational retrieval code of the satellite limb-emission measurements of the MIPAS instrument and its performances are quantitatively analyzed. The adopted regularization improves the stability of the retrieval providing smooth profiles without major degradation of the vertical resolution. In the analyzed measurements the retrieval procedure provides a vertical resolution that, in the troposphere and low stratosphere, is smaller than the vertical field of view of the instrument.


2018 ◽  
Vol 39 (3) ◽  
pp. 1276-1295 ◽  
Author(s):  
L Adam ◽  
M Hintermüller ◽  
T M Surowiec

Abstract An efficient, function-space-based second-order method for the $H^1$-projection onto the Gibbs simplex is presented. The method makes use of the theory of semismooth Newton methods in function spaces as well as Moreau–Yosida regularization and techniques from parametric optimization. A path-following technique is considered for the regularization parameter updates. A rigorous first- and second-order sensitivity analysis of the value function for the regularized problem is provided to justify the update scheme. The viability of the algorithm is then demonstrated for two applications found in the literature: binary image inpainting and labeled data classification. In both cases, the algorithm exhibits mesh-independent behavior.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Weiwei Zhang ◽  
Jinde Cao ◽  
Ahmed Alsaedi ◽  
Fuad E. Alsaadi

Finite-time synchronization for a class of fractional-order delayed neural networks with fractional order α, 0<α≤1/2 and 1/2<α<1, is investigated in this paper. Through the use of Hölder inequality, generalized Bernoulli inequality, and inequality skills, two sufficient conditions are considered to ensure synchronization of fractional-order delayed neural networks in a finite-time interval. Numerical example is given to verify the feasibility of the theoretical results.


1989 ◽  
Vol 111 (2) ◽  
pp. 218-224 ◽  
Author(s):  
E. P. Scott ◽  
J. V. Beck

Various methods have been proposed to solve the inverse heat conduction problem of determining a boundary condition at the surface of a body from discrete internal temperature measurements. These include function specification and regularization methods. This paper investigates the various components of the regularization method using the sequential regularization method proposed by Beck and Murio (1986). Specifically, the effects of the regularization order and the influence of the regularization parameter are analyzed. It is shown that as the order of regularization increases, the bias errors decrease and the variance increases. Comparatively, the zeroth regularization has higher bias errors and the second-order regularization is more sensitive to random errors. As the regularization parameter decreases, the sensitivity of the estimator to random errors is shown to increase; on the other hand, the bias errors are shown to decrease.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Vladimir Shin ◽  
Rebbecca T. Y. Thien ◽  
Yoonsoo Kim

This paper presents a noise covariance estimation method for dynamical models with rectangular noise gain matrices. A novel receding horizon least squares criterion to achieve high estimation accuracy and stability under environmental uncertainties and experimental errors is proposed. The solution to the optimization problem for the proposed criterion gives equations for a novel covariance estimator. The estimator uses a set of recent information with appropriately chosen horizon conditions. Of special interest is a constant rectangular noise gain matrices for which the key theoretical results are obtained. They include derivation of a recursive form for the receding horizon covariance estimator and iteration procedure for selection of the best horizon length. Efficiency of the covariance estimator is demonstrated through its implementation and performance on dynamical systems with an arbitrary number of process and measurement noises.


Mathematics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 99 ◽  
Author(s):  
Ioannis Argyros ◽  
Stepan Shakhno ◽  
Yurii Shunkin

We study an iterative differential-difference method for solving nonlinear least squares problems, which uses, instead of the Jacobian, the sum of derivative of differentiable parts of operator and divided difference of nondifferentiable parts. Moreover, we introduce a method that uses the derivative of differentiable parts instead of the Jacobian. Results that establish the conditions of convergence, radius and the convergence order of the proposed methods in earlier work are presented. The numerical examples illustrate the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document