scholarly journals Bijections on m-level Rook Placements

2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Kenneth Barrese ◽  
Bruce Sagan

International audience Partition the rows of a board into sets of $m$ rows called levels. An $m$-level rook placement is a subset of squares of the board with no two in the same column or the same level. We construct explicit bijections to prove three theorems about such placements. We start with two bijections between Ferrers boards having the same number of $m$-level rook placements. The first generalizes a map by Foata and Schützenberger and our proof applies to any Ferrers board. The second generalizes work of Loehr and Remmel. This construction only works for a special class of Ferrers boards but also yields a formula for calculating the rook numbers of these boards in terms of elementary symmetric functions. Finally we generalize another result of Loehr and Remmel giving a bijection between boards with the same hit numbers. The second and third bijections involve the Involution Principle of Garsia and Milne. Nous considérons les rangs d’un échiquier partagés en ensembles de $m$ rangs appelés les niveaux. Un $m$-placement des tours est un sous-ensemble des carrés du plateau tel qu’il n’y a pas deux carrés dans la même colonne ou dans le même niveau. Nous construisons deux bijections explicites entre des plateaux de Ferrers ayant les mêmes nombres de $m$-placements. La première est une généralisation d’une fonction de Foata et Schützenberger et notre démonstration est pour n’importe quels plateaux de Ferrers. La deuxième généralise une bijection de Loehr et Remmel. Cette construction marche seulement pour des plateaux particuliers, mais ça donne une formule pour le nombre de $m$-placements en terme des fonctions symétriques élémentaires. Enfin, nous généralisons un autre résultat de Loehr et Remmel donnant une bijection entre deux plateaux ayant les mêmes nombres de coups. Les deux dernières bijections utilisent le Principe des Involutions de Garsia et Milne.

2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Jonathan Bloom ◽  
Dan Saracino

International audience In their paper on Wilf-equivalence for singleton classes, Backelin, West, and Xin introduced a transformation $\phi^*$, defined by an iterative process and operating on (all) full rook placements on Ferrers boards. Bousquet-Mélou and Steingrimsson proved the analogue of the main result of Backelin, West, and Xin in the context of involutions, and in so doing they needed to prove that $\phi^*$ commutes with the operation of taking inverses. The proof of this commutation result was long and difficult, and Bousquet-Mélou and Steingrimsson asked if $\phi^*$ might be reformulated in such a way as to make this result obvious. In the present paper we provide such a reformulation of $\phi^*$, by modifying the growth diagram algorithm of Fomin. This also answers a question of Krattenthaler, who noted that a bijection defined by the unmodified Fomin algorithm obviously commutes with inverses, and asked what the connection is between this bijection and $\phi^*$. Dans leur article sur l'équivalence de Wilf pour les classes de singletons, Backelin, West et Xin ont introduit une transformation $\phi^*$, définie par un processus itératif et opérant sur (tous) les placements complets de tours sur un plateau de Ferrers. Bousquet-Melou et Steingrimsson ont démontré l'analogue du résultat principal de Backelin, West et Xin dans le contexte d'involutions, et pour ce faire ont eu besoin de démontrer que $\phi^*$ commute avec l'opération inverse. La preuve de cette commutativité est longue et difficile, et Bousquet-Melou et Steingrômsson se demandèrent s'il n'était pas possible de reformuler $\phi^*$ de sorte que le resultat devienne évident. Dans le présent article, nous proposons une telle reformulation de $\phi^*$ en modifiant l'algorithme de croissance de diagramme de Fomin. Cette reformulation répond également à une question de Krattenthaler, qui, remarquant qu'une bijection définie par l'algorithme de Fomin non modifié commute évidemment avec l'opération inverse, se demanda quel était le rapport entre cette bijection et $\phi^*$.


10.37236/1702 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Karen S. Briggs ◽  
Jeffrey B. Remmel

Garsia and Remmel (JCT. A 41 (1986), 246-275) used rook configurations to give a combinatorial interpretation to the $q$-analogue of a formula of Frobenius relating the Stirling numbers of the second kind to the Eulerian polynomials. Later, Remmel and Wachs defined generalized $p,q$-Stirling numbers of the first and second kind in terms of rook placements. Additionally, they extended their definition to give a $p,q$-analogue of rook numbers for arbitrary Ferrers boards. In this paper, we use Remmel and Wach's definition and an extension of Garsia and Remmel's proof to give a combinatorial interpretation to a $p,q$-analogue of a formula of Frobenius relating the $p,q$-Stirling numbers of the second kind to the trivariate distribution of the descent number, major index, and comajor index over $S_n$. We further define a $p,q$-analogue of the hit numbers, and show analytically that for Ferrers boards, the $p,q$-hit numbers are polynomials in $(p,q)$ with nonnegative coefficients.


2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Jonathan Bloom ◽  
Sergi Elizalde

International audience Extending the notion of pattern avoidance in permutations, we study matchings and set partitions whose arc diagram representation avoids a given configuration of three arcs. These configurations, which generalize 3-crossings and 3-nestings, have an interpretation, in the case of matchings, in terms of patterns in full rook placements on Ferrers boards. We enumerate 312-avoiding matchings and partitions, obtaining algebraic generating functions, unlike in the 321-avoiding (i.e., 3-noncrossing) case. Our approach also provides a more direct proof of a formula of Bóna for the number of 1342-avoiding permutations. Additionally, we give a bijection proving the shape-Wilf-equivalence of the patterns 321 and 213 which simplifies existing proofs by Backelin–West–Xin and Jelínek.


2012 ◽  
Vol 60 (2) ◽  
pp. 219-224 ◽  
Author(s):  
Alexander Kovačec ◽  
Salma Kuhlmann ◽  
Cordian Riener

10.37236/1877 ◽  
2005 ◽  
Vol 11 (2) ◽  
Author(s):  
J. Bell ◽  
A. M. Garsia ◽  
N. Wallach

We introduce here a new approach to the study of $m$-quasi-invariants. This approach consists in representing $m$-quasi-invariants as $N^{tuples}$ of invariants. Then conditions are sought which characterize such $N^{tuples}$. We study here the case of $S_3$ $m$-quasi-invariants. This leads to an interesting free module of triplets of polynomials in the elementary symmetric functions $e_1,e_2,e_3$ which explains certain observed properties of $S_3$ $m$-quasi-invariants. We also use basic results on finitely generated graded algebras to derive some general facts about regular sequences of $S_n$ $m$-quasi-invariants


10.37236/1547 ◽  
2000 ◽  
Vol 8 (1) ◽  
Author(s):  
Leigh Roberts

Recently Lapointe et. al. [3] have expressed Jack Polynomials as determinants in monomial symmetric functions $m_\lambda$. We express these polynomials as determinants in elementary symmetric functions $e_\lambda$, showing a fundamental symmetry between these two expansions. Moreover, both expansions are obtained indifferently by applying the Calogero-Sutherland operator in physics or quasi Laplace Beltrami operators arising from differential geometry and statistics. Examples are given, and comments on the sparseness of the determinants so obtained conclude the paper.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Florent Hivert ◽  
Olivier Mallet

International audience In this paper we present a work in progress on a conjectural new combinatorial model for the Genocchi numbers. This new model called irreducible k-shapes has a strong algebraic background in the theory of symmetric functions and leads to seemingly new features on the theory of Genocchi numbers. In particular, the natural q-analogue coming from the degree of symmetric functions seems to be unknown so far. Dans cet article, nous présentons un travail en cours sur un nouveau modèle combinatoire conjectural pour les nombres de Genocchi. Ce nouveau modèle est celui des k-formes irréductibles, qui repose sur de solides bases algébriques en lien avec la théorie des fonctions symétriques et qui conduit à des aspects apparemment nouveaux de la théorie des nombres de Genocchi. En particulier, le q-analogue naturel venant du degré des fonctions symétriques semble inconnu jusqu'ici.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Francois Viard

International audience We construct a poset from a simple acyclic digraph together with a valuation on its vertices, and we compute the values of its Möbius function. We show that the weak order on Coxeter groups $A$<sub>$n-1$</sub>, $B$<sub>$n$</sub>, $Ã$<sub>$n$</sub>, and the flag weak order on the wreath product &#8484;<sub>$r$</sub> &#8768; $S$<sub>$n$</sub> introduced by Adin, Brenti and Roichman (2012), are special instances of our construction. We conclude by briefly explaining how to use our work to define quasi-symmetric functions, with a special emphasis on the $A$<sub>$n-1$</sub> case, in which case we obtain the classical Stanley symmetric function. On construit une famille d’ensembles ordonnés à partir d’un graphe orienté, simple et acyclique munit d’une valuation sur ses sommets, puis on calcule les valeurs de leur fonction de Möbius respective. On montre que l’ordre faible sur les groupes de Coxeter $A$<sub>$n-1$</sub>, $B$<sub>$n$</sub>, $Ã$<sub>$n$</sub>, ainsi qu’une variante de l’ordre faible sur les produits en couronne &#8484;<sub>$r$</sub> &#8768; $S$<sub>$n$</sub> introduit par Adin, Brenti et Roichman (2012), sont des cas particuliers de cette construction. On conclura en expliquant brièvement comment ce travail peut-être utilisé pour définir des fonction quasi-symétriques, en insistant sur l’exemple de l’ordre faible sur $A$<sub>$n-1$</sub> où l’on obtient les séries de Stanley classiques.


Sign in / Sign up

Export Citation Format

Share Document