cascaded system
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 26)

H-INDEX

7
(FIVE YEARS 2)

Author(s):  
Vikas Kumar ◽  
Gulshan Sachdeva ◽  
Sandeep Tiwari ◽  
Parinam Anuradha ◽  
Vaibhav Jain

A conventional vapor compression refrigeration system (VCRS) cascaded with a heat-assisted ejector refrigeration system (ERS) has been experimentally analyzed. Cascading allows the VCRS to operate at lower condenser temperatures and thus achieve a higher coefficient of performance. In this cascaded system, the condenser of the vapor compression system does not dissipate its heat directly to the evaporator of the ERS; instead, water circulates between the condenser of VCRS and the evaporator of ERS to exchange the heat. Seven ejectors of different geometries have been used in the ERS; however, all the ejectors could not maintain thermal equilibrium at the desired operating conditions. The compressor of the cascaded VCRS consumed 1.3 times less power than the noncascaded VCRS. Furthermore, the cascaded system provided a maximum 87.74% improvement in COP over the noncascaded system for the same operating conditions. The performance of the system remained constant until the critical condenser pressure of the ERS.


2021 ◽  
Vol 13 (11) ◽  
pp. 2182
Author(s):  
Wenxiang Xue ◽  
Wenyu Zhao ◽  
Honglei Quan ◽  
Yan Xing ◽  
Shougang Zhang

Comparing and synchronizing atomic clocks between distant laboratories with ultra-stable frequency transfer are essential procedures in many fields of fundamental and applied science. Existing conventional methods for frequency transfer based on satellite links, however, are insufficient for the requirements of many applications. In order to achieve high-precision microwave frequency transfer over a thousand kilometers of fiber and to construct a fiber-based microwave transfer network, we propose a cascaded system for microwave frequency transfer consisting of three 100-km single-span spooled fiber links using an improved electronic phase compensation scheme. The transfer instability measured for the microwave signal reaches 1.1 × 10−14 at 1 s and 6.8 × 10−18 at 105 s, which agrees with the root-sum-square of each span contribution. It is feasible to extend the length of the fiber-based microwave frequency transfer up to 1200 km using 4 stages of our cascaded system, which is still sufficient to transfer modern cold atom microwave frequency standards. Moreover, the transfer instability of 9.0 × 10−15 at 1 s and 9.0 × 10−18 at 105 s for a 100-MHz signal is achieved. The residual phase noise power spectral density of the 300-km cascaded link measured at 100-MHz is also obtained. The rejection frequency bandwidth of the cascaded link is limited by the propagation delay of one single-span link.


2021 ◽  
Author(s):  
Yuan Li ◽  
Tomislav Dragicevic ◽  
Yichao Zhang ◽  
Frede Blaabjerg

2021 ◽  
Vol 68 (1) ◽  
pp. 296-300
Author(s):  
Guohua Zhou ◽  
Yuan Li ◽  
Minrui Leng ◽  
Zheng Gong ◽  
Guodong Xu

Sign in / Sign up

Export Citation Format

Share Document