pollution episode
Recently Published Documents


TOTAL DOCUMENTS

198
(FIVE YEARS 45)

H-INDEX

34
(FIVE YEARS 5)

Author(s):  
Xue Li ◽  
Zhaojin An ◽  
Yicheng Shen ◽  
Yi Yuan ◽  
Fengkui Duan ◽  
...  

Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1198
Author(s):  
Andrea Vannini ◽  
Muhammad Bilal Jamal ◽  
Margherita Gramigni ◽  
Riccardo Fedeli ◽  
Stefania Ancora ◽  
...  

This study investigated the dynamics of the accumulation and release of Hg2+ in lichens, using Evernia prunastri (L.) Ach. as a model species. Thalli were incubated with solutions containing 1, 10, and 100 µM Hg2+ and then exposed for 1, 2, 3, 6, 12, 18, and 24 months at the Botanical Garden of the University of Siena (a location free from local Hg sources). Lichen samples accumulated Hg proportionally to the exposure concentration, and after the exposure, reductions over time were evident, already starting from 1–2 months. After 24 months, samples released 72–74 (healthy thalli) to 94% (unhealthy thalli) of the accumulated Hg, but control values of untreated samples were never reached. Depending on the Hg content after the exposure, stable decreased concentrations were reached after 6–24 months. The results of this study highlight the ability of the lichen E. prunastri to reflect rapidly increasing environmental Hg concentrations, as well as to indicate an ameliorated situation (e.g., the closure of an Hg source). However, we have found evidence that an acute pollution episode can influence the content of Hg in lichens for several years.


2021 ◽  
Author(s):  
Hao Yang ◽  
Lei Chen ◽  
Hong Liao ◽  
Jia Zhu ◽  
Wenjie Wang ◽  
...  

Abstract. We examined the impacts of aerosol-radiation interactions, including the effects of aerosol-photolysis interaction (API) and aerosol-radiation feedback (ARF), on surface-layer ozone (O3) concentrations during one multi-pollutant air pollution episode characterized by high O3 and PM2.5 levels from 28 July to 3 August 2014 in North China, by using the Weather Research and Forecasting with Chemistry (WRF-Chem) model embedded with an integrated process analysis scheme. Our results show that aerosol-radiation interactions decrease the daytime downward shortwave radiation at surface, 2 m temperature, 10 m wind speed, planetary boundary layer height, photolysis rates J[NO2] and J[O1D] by 115.8 W m−2, 0.56 °C, 0.12 m s−1, 129 m, 1.8 × 10−3 s−1 and 6.1 × 10−6 s−1, and increase relative humidity at 2 m and downward shortwave radiation in the atmosphere by 2.4 % and 72.8 W m−2. The weakened photolysis rates and changed meteorological conditions reduce surface-layer O3 concentrations by up to 11.4 ppb (13.5 %), with API and ARF contributing 74.6 % and 25.4 % of the O3 decrease, respectively. The combined impacts of API and ARF on surface O3 are further quantitatively characterized by the ratio of changed O3 concentration to local PM2.5 level. The ratio is calculated to be −0.14 ppb (µg m−3)−1 averaged over the multi-pollutant air pollution area in North China. Process analysis indicates that the weakened O3 chemical production makes the greatest contribution to API effect while the reduced vertical mixing is the key process for ARF effect. This study implies that future PM2.5 reductions will lead to O3 increases due to weakened aerosol-radiation interactions. Therefore, tighter controls of O3 precursors are needed to offset O3 increases caused by weakened aerosol-radiation interactions in the future.


Sign in / Sign up

Export Citation Format

Share Document