inverse halftoning
Recently Published Documents


TOTAL DOCUMENTS

135
(FIVE YEARS 17)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Jun Yang ◽  
Zihao Liu ◽  
Li Chen ◽  
Ying Wu ◽  
Chen Cui ◽  
...  

Abstract Halftoning image is widely used in printing and scanning equipment, which is of great significance for the preservation and processing of these images. However, because of the different resolution of the display devices, the processing and display of halftone image are confronted with great challenges, such as Moore pattern and image blurring. Therefore, the inverse halftone technique is required to remove the halftoning screen. In this paper, we propose a sparse representation based inverse halftone algorithm via learning the clean dictionary, which is realized by two steps: deconvolution and sparse optimization in the transform domain to remove the noise. The main contributions of this paper include three aspects: first, we analysis the denoising effects for different training sets and the redundancy of dictionary; Then we propose the improved a sparse representation based denoising algorithm through adaptively learning the dictionary, which iteratively remove the noise of the training set and upgrade the quality of the dictionary; Then the error diffusion halftone image inverse halftoning algorithm is proposed. Finally, we verify that the noise level in the error diffusion linear model is fixed, and the noise level is only related to the diffusion operator. Experimental results show that the proposed algorithm has better PSNR and visual performance than state-of-the-art methods.


2021 ◽  
Vol 11 (15) ◽  
pp. 7006
Author(s):  
Chang-Hwan Son

Layer decomposition to separate an input image into base and detail layers has been steadily used for image restoration. Existing residual networks based on an additive model require residual layers with a small output range for fast convergence and visual quality improvement. However, in inverse halftoning, homogenous dot patterns hinder a small output range from the residual layers. Therefore, a new layer decomposition network based on the Gaussian convolution model (GCM) and a structure-aware deblurring strategy is presented to achieve residual learning for both the base and detail layers. For the base layer, a new GCM-based residual subnetwork is presented. The GCM utilizes a statistical distribution, in which the image difference between a blurred continuous-tone image and a blurred halftoned image with a Gaussian filter can result in a narrow output range. Subsequently, the GCM-based residual subnetwork uses a Gaussian-filtered halftoned image as the input, and outputs the image difference as a residual, thereby generating the base layer, i.e., the Gaussian-blurred continuous-tone image. For the detail layer, a new structure-aware residual deblurring subnetwork (SARDS) is presented. To remove the Gaussian blurring of the base layer, the SARDS uses the predicted base layer as the input, and outputs the deblurred version. To more effectively restore image structures such as lines and text, a new image structure map predictor is incorporated into the deblurring network to induce structure-adaptive learning. This paper provides a method to realize the residual learning of both the base and detail layers based on the GCM and SARDS. In addition, it is verified that the proposed method surpasses state-of-the-art methods based on U-Net, direct deblurring networks, and progressively residual networks.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1574
Author(s):  
Linhao Shao ◽  
Erhu Zhang ◽  
Mei Li

Inverse halftoning acting as a special image restoration problem is an ill-posed problem. Although it has been studied in the last several decades, the existing solutions can’t restore fine details and texture accurately from halftone images. Recently, the attention mechanism has shown its powerful effects in many fields, such as image processing, pattern recognition and computer vision. However, it has not yet been used in inverse halftoning. To better solve the problem of detail restoration of inverse halftoning, this paper proposes a simple yet effective deep learning model combined with the attention mechanism, which can better guide the network to remove noise dot-patterns and restore image details, and improve the network adaptation ability. The whole model is designed in an end-to-end manner, including feature extraction stage and reconstruction stage. In the feature extraction stage, halftone image features are extracted and halftone noises are removed. The reconstruction stage is employed to restore continuous-tone images by fusing the feature information extracted in the first stage and the output of the residual channel attention block. In this stage, the attention block is firstly introduced to the field of inverse halftoning, which can make the network focus on informative features and further enhance the discriminative ability of the network. In addition, a multi-stage loss function is proposed to accelerate the network optimization, which is conducive to better reconstruction of the global image. To demonstrate the generalization performance of the network for different types of halftone images, the experiment results confirm that the network can restore six different types of halftone image well. Furthermore, experimental results show that our method outperforms the state-of-the-art methods, especially in the restoration of details and textures.


2021 ◽  
Author(s):  
Jun Yang ◽  
Xiaojun Jia ◽  
Zihao Liu ◽  
Li Chen ◽  
Ying Wu

Abstract The inverse halftoning technology refers to restore a continuous-tone image from a halftone image with only bi-level pixes. However, recovering the continuous images from their halftoned ones is normally ill-posed, which making the inverse halftoning algorithm very challenging. In this paper, we propose an optimization model with two alternate projections (TAP) for image inverse halftoning under the weighted nuclear norm minimization (WNNM) framework. The main contributions are two-folds. First, the WNNM nonlocal regularization term is established, which offers a powerful mechanism of nonlocal self-similarity to ensure a more reliable estimation. Second, the alternate minimization projections are formulated for solving the image inverse halftoning, which reconstructs the continuous-tone image without destroying the image details and structures. The experiment results shown that the proposed method outperformed the state of the arts in terms of both objective measurements and subjective visual performance.


2020 ◽  
Vol 10 (4) ◽  
pp. 1521
Author(s):  
Mei Li ◽  
Erhu Zhang ◽  
Yutong Wang ◽  
Jinghong Duan ◽  
Cuining Jing

Inverse halftoning is an ill-posed problem that refers to the problem of restoring continuous-tone images from their halftone versions. Although much progress has been achieved over the last decades, the restored images still suffer from detail loss and visual artifacts. Recent studies show that inverse halftoning methods based on deep learning are superior to other traditional methods, and thus this paper aimed to systematically review the inverse halftone methods based on deep learning, so as to provide a reference for the development of inverse halftoning. In this paper, we firstly proposed a classification method for inverse halftoning methods on the basis of the source of halftone images. Then, two types of inverse halftoning methods for digital halftone images and scanned halftone images were investigated in terms of network architecture, loss functions, and training strategies. Furthermore, we studied existing image quality evaluation including subjective and objective evaluation by experiments. The evaluation results demonstrated that methods based on multiple subnetworks and methods based on multi-stage strategies are superior to other methods. In addition, the perceptual loss and the gradient loss are helpful for improving the quality of restored images. Finally, we gave the future research directions by analyzing the shortcomings of existing inverse halftoning methods.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 50995-51007 ◽  
Author(s):  
Jin Yuan ◽  
Chao Pan ◽  
Yan Zheng ◽  
Xianyi Zhu ◽  
Zheng Qin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document