resonant column device
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 9 (12) ◽  
pp. 1363
Author(s):  
Lisha Zhang ◽  
Shimin Zhang ◽  
Xin Liu ◽  
Yinsuo Sun

Due to the impact of natural and artificial influence, such as waves, tides, and artificial dewatering, the small-strain shear modulus of soils may vary with the water content of soil, causing deformation of excavations and other earth structures. The present study used a resonant column device to investigate the effects of water content, void ratio, and confining pressure on the small-strain shear modulus of a silt extracted from an excavation site near Qiantang River in Hangzhou, China. The test results revealed that the effects of the three factors are not coupled and can be characterized by three individual equations. In particular, the small-strain shear modulus decreases with increasing water content under otherwise similar conditions, which can be characterized by a power function. The classical Hardin’s equation is modified to consider the effect of water content by introducing an additional function of water content.


2019 ◽  
Vol 9 (21) ◽  
pp. 4518 ◽  
Author(s):  
Soból ◽  
Głuchowski ◽  
Szymański ◽  
Sas

The damping ratio (D) is one of the key soil parameters in geotechnical issues where the soil is subjected to dynamic loads, like machines foundation, city tram and subway traffic, and driving of sheet pile or precast pile. Each of the abovementioned geotechnical problems is connected with significant damping, so its effect should be included in the dynamical analysis. Therefore, this article focuses on the damping phenomenon in cohesive soils from the capital of Poland, which is described by damping ratio (D). In this research, a set of the damping tests by free vibration method in resonant column device were conducted, and the influence of four selected factors, i.e., shear strain (γ), effective stress (p’), plasticity index (PI), and void ratio (e) on damping ratio in wide strain range was investigated and discussed. Based on the laboratory tests, the shear strain has the most impacts on the damping ratio characteristics; the plasticity index and the effective stress also have a significant influence. Based on the performed analysis, the authors propose the empirical equations with two sets of variables, the first for low and medium cohesive soil (PI < 20%) and the second for very cohesive soils (PI > 20%).


2005 ◽  
Vol 42 (1) ◽  
pp. 121-135 ◽  
Author(s):  
Giovanni Cascante ◽  
John Vanderkooy ◽  
Wilson Chung

Wave velocity and attenuation are commonly studied in the laboratory with the resonant-column device (American Society for Testing and Materials standard), which is driven by a set of coils and magnets. This paper presents a new and robust mathematical model of the electromechanical resonant-column system. The model is used to compute various transfer functions. Eddy currents, a new source of damping identified in the resonant-column device, introduce damping proportional to the velocity of the magnets. Eddy-current damping is considered in the mathematical model. A testing program is devised to calibrate the resonant column with three aluminum probes. Experimental and theoretical results show an excellent agreement (4% maximum error). Exploratory results are presented for a dry-sand specimen. A resonant-column device is modified to demonstrate the significant effect of the induced voltage (electromotive force (EMF)) on damping ratio if tests are not based on current measurements. Free-vibration tests on aluminum specimens and a dry-sand specimen show a significant effect of the induced EMF (up to 400% increase in damping for the sand specimen). The induced voltage depends on the resonant frequency and damping of the specimen. In the case of aluminum probes, eddy-current damping represents 20–150 times the material damping of the specimen. Preliminary results on dry sand show that eddy-current damping represents up to a 15% increase in damping ratio. However, the magnitude of eddy-current damping depends on the configuration and materials used in the resonant-column device. The smaller the damping ratio of the specimen is, the more important the eddy-current damping becomes.Key words: damping, eddy currents, mechanical waves, resonant-column device, shear modulus, wave velocity.


2005 ◽  
Vol 28 (2) ◽  
pp. 12187 ◽  
Author(s):  
L David Suits ◽  
TC Sheahan ◽  
ME Kalinski ◽  
MSR Thummaluru

1998 ◽  
Vol 35 (3) ◽  
pp. 478-490 ◽  
Author(s):  
Giovanni Cascante ◽  
Carlos Santamarina ◽  
Najwa Yassir

The excitation of specimens in multiple modes enhances the characterization of granular materials. The purpose of this paper is to present the equipment modification and test procedure and data reduction for flexural excitation in a standard torsional-resonant column device. Typical results for dry and wet sand specimens are also presented. A salient advantage of the modified device is that it permits testing shear stiffness (torsional excitation) and longitudinal stiffness (flexural excitation) at frequencies which are relevant to high-resolution seismics and near-surface studies (approx. 50-200 Hz). High attenuation in flexural mode is measured in saturated and partially saturated specimens; local flow is suspected as a prevailing loss mechanism. Velocity and damping ratios are complementary indicators of saturation conditions prevailing in the specimen.Key words: mechanical waves, resonant column, velocity, attenuation, sands, modal testing.


Sign in / Sign up

Export Citation Format

Share Document