An innovative deep neural network–based approach for internal cavity detection of timber columns using percussion sound

2021 ◽  
pp. 147592172110285
Author(s):  
Lin Chen ◽  
Haibei Xiong ◽  
Xiaohan Sang ◽  
Cheng Yuan ◽  
Xiuquan Li ◽  
...  

Timber structures have been a dominant form of construction throughout most of history and continued to serve as a widely used staple of civil infrastructure in the modern era. As a natural material, wood is prone to termite damages, which often cause internal cavities for timber structures. Since internal cavities are invisible and greatly weaken structural load-bearing capacity, an effective method to timber internal cavity detection is of great importance to ensure structural safety. This article proposes an innovative deep neural network (DNN)–based approach for internal cavity detection of timber columns using percussion sound. The influence mechanism of percussion sound with the volume change of internal cavity was studied through theoretical and numerical analysis. A series of percussion tests on timber column specimens with different cavity volumes and environmental variations were conducted to validate the feasibility of the proposed DNN-based approach. Experimental results show high accuracy and generality for cavity severity identification regardless of percussion location, column section shape, and environmental effects, implying great potentials of the proposed approach as a fast tool for determining internal cavity of timber structures in field applications.

2021 ◽  
Vol 15 (58) ◽  
pp. 308-318
Author(s):  
Tran-Hieu Nguyen ◽  
Anh-Tuan Vu

In this paper, a machine learning-based framework is developed to quickly evaluate the structural safety of trusses. Three numerical examples of a 10-bar truss, a 25-bar truss, and a 47-bar truss are used to illustrate the proposed framework. Firstly, several truss cases with different cross-sectional areas are generated by employing the Latin Hypercube Sampling method. Stresses inside truss members as well as displacements of nodes are determined through finite element analyses and obtained values are compared with design constraints. According to the constraint verification, the safety state is assigned as safe or unsafe. Members’ sectional areas and the safety state are stored as the inputs and outputs of the training dataset, respectively. Three popular machine learning classifiers including Support Vector Machine, Deep Neural Network, and Adaptive Boosting are used for evaluating the safety of structures. The comparison is conducted based on two metrics: the accuracy and the area under the ROC curve. For the two first examples, three classifiers get more than 90% of accuracy. For the 47-bar truss, the accuracies of the Support Vector Machine model and the Deep Neural Network model are lower than 70% but the Adaptive Boosting model still retains the high accuracy of approximately 98%. In terms of the area under the ROC curve, the comparative results are similar. Overall, the Adaptive Boosting model outperforms the remaining models. In addition, an investigation is carried out to show the influence of the parameters on the performance of the Adaptive Boosting model.


Author(s):  
Zhouyang Shen ◽  
Peng Pan ◽  
Dongbin Zhang ◽  
Shimin Huang

Author(s):  
David T. Wang ◽  
Brady Williamson ◽  
Thomas Eluvathingal ◽  
Bruce Mahoney ◽  
Jennifer Scheler

Author(s):  
P.L. Nikolaev

This article deals with method of binary classification of images with small text on them Classification is based on the fact that the text can have 2 directions – it can be positioned horizontally and read from left to right or it can be turned 180 degrees so the image must be rotated to read the sign. This type of text can be found on the covers of a variety of books, so in case of recognizing the covers, it is necessary first to determine the direction of the text before we will directly recognize it. The article suggests the development of a deep neural network for determination of the text position in the context of book covers recognizing. The results of training and testing of a convolutional neural network on synthetic data as well as the examples of the network functioning on the real data are presented.


2020 ◽  
Author(s):  
Ala Supriya ◽  
Chiluka Venkat ◽  
Aliketti Deepak ◽  
GV Hari Prasad

Sign in / Sign up

Export Citation Format

Share Document