scholarly journals Secure Path: Block-Chaining IoT Information for Continuous Authentication in Smart Spaces

IoT ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 326-340
Author(s):  
Lorenzo Bracciale ◽  
Pierpaolo Loreti ◽  
Claudio Pisa ◽  
Alex Shahidi

The Internet of Things offers a wide range of possibilities that can be exploited more or less explicitly for user authentication, ranging from specifically designed systems including biometric devices to environmental sensors that can be opportunistically used to feed behavioural authentication systems. How to integrate all this information in a reliable way to get a continuous authentication service presents several open challenges. Among these: how to combine semi-trusted information coming from non-tamper-proof sensors, where to store such data avoiding a single point of failure, how to analyse data in a distributed way, which interface to use to provide an authentication service to a multitude of different services and applications. In this paper, we present a Blockchain-based architectural solution of a distributed system able to transform IoT interactions into useful data for an authentication system. The design includes: (i) a security procedure to certify users’ positions and identities, (ii) a secure storage to hold this information, and (iii) a service to dynamically assign a trust level to a user’s position. We call this system “Secure Path”.

Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2985 ◽  
Author(s):  
Wencheng Yang ◽  
Song Wang ◽  
Jiankun Hu ◽  
Ahmed Ibrahim ◽  
Guanglou Zheng ◽  
...  

Remote user authentication for Internet of Things (IoT) devices is critical to IoT security, as it helps prevent unauthorized access to IoT networks. Biometrics is an appealing authentication technique due to its advantages over traditional password-based authentication. However, the protection of biometric data itself is also important, as original biometric data cannot be replaced or reissued if compromised. In this paper, we propose a cancelable iris- and steganography-based user authentication system to provide user authentication and secure the original iris data. Most of the existing cancelable iris biometric systems need a user-specific key to guide feature transformation, e.g., permutation or random projection, which is also known as key-dependent transformation. One issue associated with key-dependent transformations is that if the user-specific key is compromised, some useful information can be leaked and exploited by adversaries to restore the original iris feature data. To mitigate this risk, the proposed scheme enhances system security by integrating an effective information-hiding technique—steganography. By concealing the user-specific key, the threat of key exposure-related attacks, e.g., attacks via record multiplicity, can be defused, thus heightening the overall system security and complementing the protection offered by cancelable biometric techniques.


Authentication of a user through an ID and password is generally done at the start of a session. But the continuous authentication system observe the genuineness of the user throughout the entire session, and not at login only. In this paper, we propose the usage of keystroke dynamics as biometric trait for continuous user authentication in desktop platform. Biometric Authentication involves mainly three phases named as enrollment phase, verification phase and identification phase. The identification phase marks the accessed user as an authenticated only if the input pattern matches with the profile pattern otherwise the system is logout. The proposed Continuous User Biometric Authentication (CUBA) System is based on free text input from keyboard. There is no restriction on input data during Enrolment, Verification, and Identification phase. Unsupervised One-class Support Vector Machine is used to classify the authenticated user’s input from all the other inputs. This continuous authentication system can be used in many areas like in Un-proctored online examination systems, Intrusion & Fraud Detection Systems, Areas where user alertness is required for entire period e.g. Controlling Air Traffic etc.


2019 ◽  
Vol 19 (4) ◽  
pp. 43-53
Author(s):  
Jaeyeon Park ◽  
◽  
Jaeyoung Lee ◽  
Hyoungseok Lee ◽  
Jiwon Kang ◽  
...  

2019 ◽  
Vol 2 (1) ◽  
pp. 4 ◽  
Author(s):  
Yosef Ashibani ◽  
Dylan Kauling ◽  
Qusay Mahmoud

There has been a rapid increase in the number of Internet of Things (IoT) devices in the last few years, providing a wide range of services such as camera feeds, light controls, and door locks for remote access. Access to IoT devices, whether within the same environment or remotely via the Internet, requires proper security mechanisms in order to avoid disclosing any secure information or access privileges. Authentication, on which other security classes are built, is the most important part of IoT security. Without ensuring that the authorized party is who it claims to be, other security factors would be useless. Additionally, with the increased mobility of IoT devices, traditional authentication mechanisms, such as a username and password, are less effective. Numerous security challenges in the IoT domain have resulted in the proposal of many different approaches to authentication. Many of these methods require either carrying an authentication token, such as a smartcard, or restricting access to a particular physical location. Considering that most IoT devices contain a wide array of sensors, a large amount of contextual information can be provided. Thus, real-time security mechanisms can protect user access by, for example, utilizing contextual information to validate requests. A variety of contextual information can be retrieved to strengthen the authentication process, both at the time of access request and throughout the entire access session, without requiring user interaction, which avoids the risk of being discovered by attackers of these features. In this paper, we introduce a continuous authentication framework that integrates contextual information for user authentication in smart homes. The implementation and evaluation show that the framework can protect smart devices against unauthorized access from both anonymous and known users, either, locally or remotely, in a flexible manner and without requiring additional user intervention.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Bingran Wang ◽  
Tiancheng Lou ◽  
Lingling Wei ◽  
Wenchan Chen ◽  
Longbing Huang ◽  
...  

AbstractAlternaria alternata, a causal agent of leaf blights and spots on a wide range of hosts, has a high risk of developing resistance to fungicides. Procymidone, a dicarboximide fungicide (DCF), has been widely used in controlling Alternaria leaf blights in China for decades. However, the resistance of A. alternata against DCFs has rarely been reported from crucifer plants. A total of 198 A. alternata isolates were collected from commercial fields of broccoli and cabbage during 2018–2019, and their sensitivities to procymidone were determined. Biochemical and molecular characteristics were subsequently compared between the high-level procymidone-resistant (ProHR) and procymidone-sensitive (ProS) isolates, and also between ProHR isolates from broccoli and cabbage. Compared with ProS isolates, the mycelial growth rate, sporulation capacity and virulence of most ProHR isolates were reduced; ProHR isolates displayed an increased sensitivity to osmotic stresses and a reduced sensitivity to sodium dodecyl sulfate (SDS); all ProHR isolates showed a reduced sensitivity to hydrogen peroxide (H2O2) except for the isolate B102. Correlation analysis revealed a positive cross-resistance between procymidone and iprodione, or fludioxonil. When treated with 10 μg/mL of procymidone, both mycelial intracellular glycerol accumulations (MIGAs) and relative expression of AaHK1 in ProS isolates were higher than those in ProHR isolates. Sequence alignment of AaHK1 from ten ProHR isolates demonstrated that five of them possessed a single-point mutation (P94A, V612L, E708K or Q924STOP), and four isolates had an insertion or a deletion in their coding regions. No significant difference in biochemical characteristics was observed among ProHR isolates from two different hosts, though mutations in AaHK1 of the cabbage-originated ProHR isolates were distinct from those of the broccoli-originated ProHR isolates.


2021 ◽  
Vol 54 (2) ◽  
pp. 1-42
Author(s):  
Abdullah Qasem ◽  
Paria Shirani ◽  
Mourad Debbabi ◽  
Lingyu Wang ◽  
Bernard Lebel ◽  
...  

In the era of the internet of things (IoT), software-enabled inter-connected devices are of paramount importance. The embedded systems are very frequently used in both security and privacy-sensitive applications. However, the underlying software (a.k.a. firmware) very often suffers from a wide range of security vulnerabilities, mainly due to their outdated systems or reusing existing vulnerable libraries; which is evident by the surprising rise in the number of attacks against embedded systems. Therefore, to protect those embedded systems, detecting the presence of vulnerabilities in the large pool of embedded devices and their firmware plays a vital role. To this end, there exist several approaches to identify and trigger potential vulnerabilities within deployed embedded systems firmware. In this survey, we provide a comprehensive review of the state-of-the-art proposals, which detect vulnerabilities in embedded systems and firmware images by employing various analysis techniques, including static analysis, dynamic analysis, symbolic execution, and hybrid approaches. Furthermore, we perform both quantitative and qualitative comparisons among the surveyed approaches. Moreover, we devise taxonomies based on the applications of those approaches, the features used in the literature, and the type of the analysis. Finally, we identify the unresolved challenges and discuss possible future directions in this field of research.


Author(s):  
Akshay Valsaraj ◽  
Ithihas Madala ◽  
Nikhil Garg ◽  
Mohit Patil ◽  
Veeky Baths

2021 ◽  
Vol 11 (8) ◽  
pp. 3623
Author(s):  
Omar Said ◽  
Amr Tolba

Employment of the Internet of Things (IoT) technology in the healthcare field can contribute to recruiting heterogeneous medical devices and creating smart cooperation between them. This cooperation leads to an increase in the efficiency of the entire medical system, thus accelerating the diagnosis and curing of patients, in general, and rescuing critical cases in particular. In this paper, a large-scale IoT-enabled healthcare architecture is proposed. To achieve a wide range of communication between healthcare devices, not only are Internet coverage tools utilized but also satellites and high-altitude platforms (HAPs). In addition, the clustering idea is applied in the proposed architecture to facilitate its management. Moreover, healthcare data are prioritized into several levels of importance. Finally, NS3 is used to measure the performance of the proposed IoT-enabled healthcare architecture. The performance metrics are delay, energy consumption, packet loss, coverage tool usage, throughput, percentage of served users, and percentage of each exchanged data type. The simulation results demonstrate that the proposed IoT-enabled healthcare architecture outperforms the traditional healthcare architecture.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2417
Author(s):  
Andrzej Michalski ◽  
Zbigniew Watral

This article presents the problems of powering wireless sensor networks operating in the structures of the Internet of Things (IoT). This issue was discussed on the example of a universal end node in IoT technology containing RFID (Radio Frequency Identification) tags. The basic methods of signal transmission in these types of networks are discussed and their impact on the basic requirements such as range, transmission speed, low energy consumption, and the maximum number of devices that can simultaneously operate in the network. The issue of low power consumption of devices used in IoT solutions is one of the main research objects. The analysis of possible communication protocols has shown that there is a possibility of effective optimization in this area. The wide range of power sources available on the market, used in nodes of wireless sensor networks, was compared. The alternative possibilities of powering the network nodes from Energy Harvesting (EH) generators are presented.


Sign in / Sign up

Export Citation Format

Share Document