scholarly journals Building Shadow Detection on Ghost Images

2020 ◽  
Vol 12 (4) ◽  
pp. 679
Author(s):  
Guoqing Zhou ◽  
Hongjun Sha

Although many efforts have been made on building shadow detection from aerial images, little research on simultaneous shadows detection on both building roofs and grounds has been presented. Hence, this paper proposes a new method for simultaneous shadow detection on ghost image. In the proposed method, a corner point on shadow boundary is selected and its 3D approximate coordinate is calculated through photogrammetric collinear equation on the basis of assumption of average elevation within the aerial image. The 3D coordinates of the shadow corner point on shadow boundary is used to calculate the solar zenith angle and the solar altitude angle. The shadow areas on the ground, at the moment of aerial photograph shooting are determined by the solar zenith angle and the solar altitude angle with the prior information of the digital building model (DBM). Using the relationship between the shadows of each building and the height difference of buildings, whether there exists a shadow on the building roof is determined, and the shadow area on the building roof on the ghost image is detected on the basis of the DBM. High-resolution aerial images located in the City of Denver, Colorado, USA are used to verify the proposed method. The experimental results demonstrate that the shadows of the 120 buildings in the study area are completely detected, and the success rate is 15% higher than the traditional shadow detection method based on shadow features. Especially, when the shadows occur on the ground and on the buildings roofs, the successful rate of shadow detection can be improved by 9.42% and 33.33% respectively.

Author(s):  
G. Zhou ◽  
J. Sha ◽  
T. Yue ◽  
Q. Wang ◽  
X. Liu ◽  
...  

Shadow is one of the basic features of remote sensing image, it expresses a lot of information of the object which is loss or interference, and the removal of shadow is always a difficult problem to remote sensing image processing. In this paper, it is mainly analyzes the characteristics and properties of shadows from the ghost image (traditional orthorectification). The DBM and the interior and exterior orientation elements of the image are used to calculate the zenith angle of sun. Then this paper combines the scope of the architectural shadows which has be determined by the zenith angle of sun with the region growing method to make the detection of architectural shadow areas. This method lays a solid foundation for the shadow of the repair from the ghost image later. It will greatly improve the accuracy of shadow detection from buildings and make it more conducive to solve the problem of urban large-scale aerial imagines.


2019 ◽  
Vol 11 (18) ◽  
pp. 2119 ◽  
Author(s):  
Naoyuki Hashimoto ◽  
Yuki Saito ◽  
Masayasu Maki ◽  
Koki Homma

Reflectance and vegetation indices obtained from aerial images are often used for monitoring crop fields. In recent years, unmanned aerial vehicles (UAVs) have become popular and aerial images have been collected under various solar radiation conditions. The value of observed reflectance and vegetation indices are considered to be affected by solar radiation conditions, which may lead to inaccurate estimations of crop growth. In this study, in order to evaluate the effect of solar radiation conditions on aerial images, canopy reflectance in paddy fields was simulated by a radiative transfer model, FLiES (Forest Light Environmental Simulator), for various solar radiation conditions and canopy structures. Several parameters including solar zenith angle, proportion of diffuse light for incident sunlight, plant height, coordinates of plants and leaf area density, were tested in FLiES. The simulation results showed that the solar zenith angle did not vary the canopy reflectance under the conditions of the proportion of diffuse light at 1.0, but the variation was greater at lower proportions of diffuse light. The difference in reflectance caused by solar radiation was 0.01 and 0.1 at the maximum for red and near-infrared bands, respectively. The simulation results also showed that the differences in reflectance affect vegetation indices (Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index 2 (EVI2)). The variation caused by solar radiation conditions was the least for NDVI and the greatest for SR. However, NDVI was saturated at the least leaf area index (LAI), whereas SR was only slightly saturated. EVI2 was intermediate between SR and NDVI, both in terms of variation and saturation. The simulated reflectance and vegetation indices were similar to those obtained from the aerial images collected in the farmers’ paddy fields. These results suggest that a large proportion of diffuse light (close to 1.0) or a middle range of solar zenith angle (45 to 65 degrees) may be desirable for UAV monitoring. However, to maintain flexibility of time and occasion for UAV monitoring, EVI2 should be used to evaluate crop growth, although calibration based on solar radiation conditions is recommended.


2021 ◽  
Vol 42 (11) ◽  
pp. 4224-4240
Author(s):  
Gyuyeon Kim ◽  
Yong-Sang Choi ◽  
Sang Seo Park ◽  
Jhoon Kim

2021 ◽  
Vol 20 (2) ◽  
pp. 265-274
Author(s):  
Angela C. G. B. Leal ◽  
Marcelo P. Corrêa ◽  
Michael F. Holick ◽  
Enaldo V. Melo ◽  
Marise Lazaretti-Castro

2007 ◽  
Vol 64 (2) ◽  
pp. 656-664 ◽  
Author(s):  
Shouting Gao ◽  
Yushu Zhou ◽  
Xiaofan Li

Abstract Effects of diurnal variations on tropical heat and water vapor equilibrium states are investigated based on hourly data from two-dimensional cloud-resolving simulations. The model is integrated for 40 days and the simulations reach equilibrium states in all experiments. The simulation with a time-invariant solar zenith angle produces a colder and drier equilibrium state than does the simulation with a diurnally varied solar zenith angle. The simulation with a diurnally varied sea surface temperature generates a colder equilibrium state than does the simulation with a time-invariant sea surface temperature. Mass-weighted mean temperature and precipitable water budgets are analyzed to explain the thermodynamic differences. The simulation with the time-invariant solar zenith angle produces less solar heating, more condensation, and consumes more moisture than the simulation with the diurnally varied solar zenith angle. The simulation with the diurnally varied sea surface temperature produces a colder temperature through less latent heating and more IR cooling than the simulation with the time-invariant sea surface temperature.


Sign in / Sign up

Export Citation Format

Share Document