sorption heat
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 26)

H-INDEX

21
(FIVE YEARS 4)

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Rachida Ouaabou ◽  
Said Ennahli ◽  
Chira Di Lorenzo ◽  
Hafida Hanine ◽  
Aadil Bajoub ◽  
...  

Understanding sorption isotherms is crucial in food science for optimizing the drying processes, enhancing the shelf-life of food, and maintaining food quality during storage. This study investigated the isotherms of sweet cherry powder (SCP) using the static gravimetric method. The experimental water sorption curves of lyophilized sweet cherry powder were determined at 30°C, 40°C, and 50°C. The curves were then fitted to six isotherm models: Modified GAB, Halsey, Smith, Oswin, Caurie, and Kühn models. To define the energy associated with the sorption process, the isosteric sorption heat, differential entropy, and spreading pressure were derived from the isotherms. Among the six models, the Smith model is the most reliable in predicting the sorption of the cherry powder with a determination coefficient (R2) of 0.9978 and a mean relative error (MRE) ≤1.61. The values of the net isosteric heat and differential entropy for the cherry increased exponentially as the moisture content decreased. The net isosteric heat values varied from 10.63 to 90.97 kJ mol−1, while the differential entropy values varied from 27.94 to 273.39 J. mol−1K−1. Overall, the enthalpy-entropy compensation theory showed that enthalpy-controlled mechanisms could be used to regulate water adsorption in cherry powders.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7809
Author(s):  
Manca Ocvirk ◽  
Alenka Ristić ◽  
Nataša Zabukovec Logar

The efficiency of thermochemical heat storage is crucially determined by the performance of the sorbent used, which includes a high sorption capacity and a low regeneration temperature. The thermochemical salt hydrate– γ-alumina composite sorbents are promising materials for this application but lack systematic study of the influence of γ-alumina structural properties on the final storage performance. In this study, mesoporous γ-Al2O3 supports were prepared by solvothermal and hydrothermal synthesis containing a block copolymer (F-127) surfactant to design thermochemical CaCl2 and LiCl composite water sorbents. Altering the solvent in the synthesis has a significant effect on the structural properties of the γ-Al2O3 mesostructure, which was monitored by powder XRD, nitrogen physisorption, and SEM. Solvothermal synthesis led to a formation of mesoporous γ-Al2O3 with higher specific surface area (213 m2/g) and pore volume (0.542 g/cm3) than hydrothermal synthesis (147 m2/g; 0.414 g/cm3). The highest maximal water sorption capacity (2.87 g/g) and heat storage density (5.17 GJ/m3) was determined for W-46-LiCl containing 15 wt% LiCl for space heating, while the best storage performance in the sense of fast kinetics of sorption, without sorption hysteresis, low desorption temperature, very good cycling stability, and energy storage density of 1.26 GJ/m3 was achieved by W-46-CaCl2.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6052
Author(s):  
Hamza Ayaz ◽  
Veerakumar Chinnasamy ◽  
Junhyeok Yong ◽  
Honghyun Cho

Sorption thermochemical storage systems can store thermal energy for the long-term with minimum amount of losses. Their flexibility in working with sustainable energy sources further increases their importance vis-à-vis high levels of pollution from carbon-based energy forms. These storage systems can be utilized for cooling and heating purposes or shifting the peak load. This review provides a basic understanding of the technologies and critical factors involved in the performance of thermal energy storage (TES) systems. It is divided into four sections, namely materials for different sorption storage systems, recent advances in the absorption cycle, system configuration, and some prototypes and systems developed for sorption heat storage systems. Energy storage materials play a vital role in the system design, owing to their thermal and chemical properties. Materials for sorption storage systems are discussed in detail, with a new class of absorption materials, namely ionic liquids. It can be a potential candidate for thermal energy storage due to its substantial thermophysical properties which have not been utilized much. Recent developments in the absorption cycle and integration of the same within the storage systems are summarized. In addition, open and closed systems are discussed in the context of recent reactor designs and their critical issues. Finally, the last section summarizes some prototypes developed for sorption heat storage systems.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3754
Author(s):  
Benjamin Fumey ◽  
Luca Baldini

Sorption heat storage system performance heavily depends on the operating temperature. It is found that testing temperatures reported in literature vary widely. In respect to the building application for space heating, reported testing temperatures are often outside of application scope and at times even incomplete. This has led to application performance overestimation and prevents sound comparison between reports. This issue is addressed in this paper and a remedy pursued by proposing a static temperature and vapor pressure-based testing guideline for building-integrated sorption heat storage systems. By following this guideline, comparable testing results in respect to temperature gain, power and energy density will be possible, in turn providing a measure for evaluation of progress.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3105
Author(s):  
Mohamed Zbair ◽  
Simona Bennici

To improve the proficiency of energy systems in addition to increasing the usage of renewable energies, thermal energy storage (TES) is a strategic path. The present literature review reports an overview of the recent advancements in the utilization of salt hydrates (single or binary mixtures) and composites as sorbents for sorption heat storage. Starting by introducing various heat storage systems, the operating concept of the adsorption TES was clarified and contrasted to other technologies. Consequently, a deep examination and crucial problems related to the different types of salt hydrates and adsorbents were performed. Recent advances in the composite materials used in sorption heat storage were also reviewed and compared. A deep discussion related to safety, price, availability, and hydrothermal stability issues is reported. Salt hydrates display high theoretical energy densities, which are promising materials in TES. However, they show a number of drawbacks for use in the basic state including low temperature overhydration and deliquescence (e.g., MgCl2), high temperature degradation, sluggish kinetics leading to a low temperature rise (e.g., MgSO4), corrosiveness and toxicity (e.g., Na2S), and low mass transport due to the material macrostructure. The biggest advantage of adsorption materials is that they are more hydrothermally stable. However, since adsorption is the most common sorption phenomenon, such materials have a lower energy content. Furthermore, when compared to salt hydrates, they have higher prices per mass, which reduces their appeal even further when combined with lower energy densities. Economies of scale and the optimization of manufacturing processes may help cut costs. Among the zeolites, Zeolite 13X is among the most promising. Temperature lifts of 35–45 °C were reached in lab-scale reactors and micro-scale experiments under the device operating settings. Although the key disadvantage is an excessively high desorption temperature, which is problematic to attain using heat sources, for instance, solar thermal collectors. To increase the energy densities and enhance the stability of adsorbents, composite materials have been examined to ameliorate the stability and to achieve suitable energy densities. Based on the reviewed materials, MgSO4 has been identified as the most promising salt; it presents a higher energy density compared to other salts and can be impregnated in a porous matrix to prepare composites in order to overcome the drawbacks connected to its use as pure salt. However, due to pore volume reduction, potential deliquescence and salt leakage from the composite as well as degradation, issues with heat and mass transport can still exist. In addition, to increase the kinetics, stability, and energy density, the use of binary salt deposited in a porous matrix is suitable. Nevertheless, this solution should take into account the deliquescence, safety, and cost of the selected salts. Therefore, binary systems can be the solution to design innovative materials with predetermined sorption properties adapted to particular sorption heat storage cycles. Finally, working condition, desorption temperature, material costs, lifetime, and reparation, among others, are the essential point for commercial competitiveness. High material costs and desorption temperatures, combined with lower energy densities under normal device operating conditions, decrease their market attractiveness. As a result, the introduction of performance metrics within the scientific community and the use of economic features on a material scale are suggested.


2021 ◽  
Vol 49 (1) ◽  
pp. 121-127
Author(s):  
Syed Naveed ◽  
Satyasreet Jena ◽  
Sharma Kumar ◽  
Kumar Anil

Metal hydrides are broadly investigated, for more than three decades, towards its application for cooling and heating applications. As a continuation of those works, in the present study, authors have investigated the performance of a multi-stage sorption heat pump for multiple cooling and heating outputs. The metal hydrides selected for the present study are Ti0.98Zr0.02V0.43Fe0.09Cr0.05Mn1.5, MmNi4.7Al0.3, LaNi4.8Al0.2 and Zr0.9Ti0.1 Cr0.9Fe1.1, with the operating temperature range as 20°C for cooling output, 45°C for heating output and 140°C for heat supply. The system produces three cooling and four heating outputs with only one heat input. The performance of the system is investigated, via finite volume approach, in terms of hydrogen interaction within the coupled beds, bed temperature variations and heat interactions during hydrogen transfer processes. The minimum temperature observed during the cooling process is 0.5°C, whereas the maximum temperature observed during the heating process is 60°C, which shows that the obtained temperature is capable of space air-conditioning. On the other hand, the maximum cooling and heating outputs, at a particular instant of time, are estimated at 361 W and 402 W, respectively with a heat supply of 23 W.


Sign in / Sign up

Export Citation Format

Share Document