liquid meniscus
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 5)

H-INDEX

18
(FIVE YEARS 2)

Author(s):  
Zhaoxin Liu ◽  
Zheng Li ◽  
Zheren Cai ◽  
yali qiao ◽  
Yongrui Yang ◽  
...  

The meniscus-guided coating (MGC) is an efficient solution-processing method for preparing organic functional films. However, the uniform shear stress and mass transfer in the liquid meniscus is still challenging for...


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Siva Rama Krishnan ◽  
John Bal ◽  
Shawn A. Putnam

AbstractHemiwicking is the phenomena where a liquid wets a textured surface beyond its intrinsic wetting length due to capillary action and imbibition. In this work, we derive a simple analytical model for hemiwicking in micropillar arrays. The model is based on the combined effects of capillary action dictated by interfacial and intermolecular pressures gradients within the curved liquid meniscus and fluid drag from the pillars at ultra-low Reynolds numbers $${\boldsymbol{(}}{{\bf{10}}}^{{\boldsymbol{-}}{\bf{7}}}{\boldsymbol{\lesssim }}{\bf{Re}}{\boldsymbol{\lesssim }}{{\bf{10}}}^{{\boldsymbol{-}}{\bf{3}}}{\boldsymbol{)}}$$(10−7≲Re≲10−3). Fluid drag is conceptualized via a critical Reynolds number: $${\bf{Re}}{\boldsymbol{=}}\frac{{{\bf{v}}}_{{\bf{0}}}{{\bf{x}}}_{{\bf{0}}}}{{\boldsymbol{\nu }}}$$Re=v0x0ν, where v0 corresponds to the maximum wetting speed on a flat, dry surface and x0 is the extension length of the liquid meniscus that drives the bulk fluid toward the adsorbed thin-film region. The model is validated with wicking experiments on different hemiwicking surfaces in conjunction with v0 and x0 measurements using Water $${\boldsymbol{(}}{{\bf{v}}}_{{\bf{0}}}{\boldsymbol{\approx }}{\bf{2}}\,{\bf{m}}{\boldsymbol{/}}{\bf{s}}{\boldsymbol{,}}\,{\bf{25}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{\lesssim }}{{\bf{x}}}_{{\bf{0}}}{\boldsymbol{\lesssim }}{\bf{28}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{)}}$$(v0≈2m/s,25µm≲x0≲28µm), viscous FC-70 $${\boldsymbol{(}}{{\boldsymbol{v}}}_{{\bf{0}}}{\boldsymbol{\approx }}{\bf{0.3}}\,{\bf{m}}{\boldsymbol{/}}{\bf{s}}{\boldsymbol{,}}\,{\bf{18.6}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{\lesssim }}{{\boldsymbol{x}}}_{{\bf{0}}}{\boldsymbol{\lesssim }}{\bf{38.6}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{)}}$$(v0≈0.3m/s,18.6µm≲x0≲38.6µm) and lower viscosity Ethanol $${\boldsymbol{(}}{{\boldsymbol{v}}}_{{\bf{0}}}{\boldsymbol{\approx }}{\bf{1.2}}\,{\bf{m}}{\boldsymbol{/}}{\bf{s}}{\boldsymbol{,}}\,{\bf{11.8}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{\lesssim }}{{\bf{x}}}_{{\bf{0}}}{\boldsymbol{\lesssim }}{\bf{33.3}}\,{\boldsymbol{\mu }}{\bf{m}}{\boldsymbol{)}}$$(v0≈1.2m/s,11.8µm≲x0≲33.3µm).


2018 ◽  
Vol 282 ◽  
pp. 201-206
Author(s):  
David S.L. Mui ◽  
Nathan Musselwhite ◽  
Mark Kawaguchi

The collapse of high aspect ratio features is a daunting challenge facing the semiconductor industry. The complex physics and dynamics that govern this process are not entirely understood. Through the use of optical video imaging we have observed pattern collapse in real time. It was found that the liquid meniscus reconfigures itself laterally along the length of the structure as opposed to the expected top-to-bottom drying. Herein, we report on our observations and the physics of drying high aspect ratio structures.


2018 ◽  
Vol 170 ◽  
pp. 341-348 ◽  
Author(s):  
Zhibin Wang ◽  
Shuzhe Li ◽  
Rong Chen ◽  
Xun Zhu ◽  
Qiang Liao ◽  
...  

2018 ◽  
Vol 183 ◽  
pp. 13-19 ◽  
Author(s):  
Xiaowei Tian ◽  
Tiantian Kong ◽  
Pingan Zhu ◽  
Zhanxiao Kang ◽  
Leyan Lei ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document