Modeling of ion emission from a liquid meniscus

Author(s):  
Marco Magnani ◽  
Manuel Gamero
Keyword(s):  
Author(s):  
Patrick P. Camus

The theory of field ion emission is the study of electron tunneling probability enhanced by the application of a high electric field. At subnanometer distances and kilovolt potentials, the probability of tunneling of electrons increases markedly. Field ionization of gas atoms produce atomic resolution images of the surface of the specimen, while field evaporation of surface atoms sections the specimen. Details of emission theory may be found in monographs.Field ionization (FI) is the phenomena whereby an electric field assists in the ionization of gas atoms via tunneling. The tunneling probability is a maximum at a critical distance above the surface,xc, Fig. 1. Energy is required to ionize the gas atom at xc, I, but at a value reduced by the appliedelectric field, xcFe, while energy is recovered by placing the electron in the specimen, φ. The highest ionization probability occurs for those regions on the specimen that have the highest local electric field. Those atoms which protrude from the average surfacehave the smallest radius of curvature, the highest field and therefore produce the highest ionizationprobability and brightest spots on the imaging screen, Fig. 2. This technique is called field ion microscopy (FIM).


1978 ◽  
Vol 41 (4) ◽  
pp. 243-246 ◽  
Author(s):  
L. M. Wickens ◽  
J. E. Allen ◽  
P. T. Rumsby
Keyword(s):  

2021 ◽  
Vol 504 (1) ◽  
pp. 280-299
Author(s):  
Marija R Jankovic ◽  
James E Owen ◽  
Subhanjoy Mohanty ◽  
Jonathan C Tan

ABSTRACT Short-period super-Earth-sized planets are common. Explaining how they form near their present orbits requires understanding the structure of the inner regions of protoplanetary discs. Previous studies have argued that the hot inner protoplanetary disc is unstable to the magnetorotational instability (MRI) due to thermal ionization of potassium, and that a local gas pressure maximum forms at the outer edge of this MRI-active zone. Here we present a steady-state model for inner discs accreting viscously, primarily due to the MRI. The structure and MRI-viscosity of the inner disc are fully coupled in our model; moreover, we account for many processes omitted in previous such models, including disc heating by both accretion and stellar irradiation, vertical energy transport, realistic dust opacities, dust effects on disc ionization, and non-thermal sources of ionization. For a disc around a solar-mass star with a standard gas accretion rate ($\dot{M}\, \sim \, 10^{-8}$ M⊙ yr−1) and small dust grains, we find that the inner disc is optically thick, and the accretion heat is primarily released near the mid-plane. As a result, both the disc mid-plane temperature and the location of the pressure maximum are only marginally affected by stellar irradiation, and the inner disc is also convectively unstable. As previously suggested, the inner disc is primarily ionized through thermionic and potassium ion emission from dust grains, which, at high temperatures, counteract adsorption of free charges on to grains. Our results show that the location of the pressure maximum is determined by the threshold temperature above which thermionic and ion emission become efficient.


2004 ◽  
Vol 49 (1) ◽  
pp. 19-21
Author(s):  
N. V. Gavrilov ◽  
A. S. Kamenetskikh

Author(s):  
Susarla Raghuram ◽  
Anil Bhardwaj ◽  
Damien Hutsemékers ◽  
Cyrielle Opitom ◽  
Jean Manfroid ◽  
...  

Abstract The recent observations show that comet C/2016 R2 (Pan-Starrs) has a unique and peculiar composition when compared with several other comets observed at 2.8 au heliocentric distance. Assuming solar resonance fluorescence is the only excitation source, the observed ionic emission intensity ratios are used to constrain the corresponding neutral abundances in this comet. We developed a physico-chemical model to study the ion density distribution in the inner coma of this comet by accounting for photon and electron impact ionization of neutrals, charge exchange and proton transfer reactions between ions and neutrals, and electron-ion thermal recombination reactions. Our calculations show that CO$_2^+$ and CO+ are the major ions in the inner coma, and close to the surface of nucleus CH3OH+, CH3OH$_2^+$ and O$_2^+$ are also important ions. By considering various excitation sources, we also studied the emission mechanisms of different excited states of CO+, CO$_2^+$, N$_2^+$, and H2O+. We found that the photon and electron impact ionization and excitation of corresponding neutrals significantly contribute to the observed ionic emissions for radial distances smaller than 300 km and at larger distances, solar resonance fluorescence is the major excitation source. Our modelled ion emission intensity ratios are consistent with the ground-based observations. Based on the modelled emission processes, we suggest that the observed ion emission intensity ratios can be used to derive the neutral composition in the cometary coma only when the ion densities are significantly controlled by photon and photoelectron impact ionization of neutrals rather than by the ion-neutral chemistry.


1990 ◽  
Vol 102 (1-3) ◽  
pp. 71-78 ◽  
Author(s):  
Margarete M. Brudny ◽  
Wolfgang Rybczynski ◽  
Wolfhart Seidel ◽  
Dieter Thiel

1987 ◽  
Vol 35 (16) ◽  
pp. 8330-8340 ◽  
Author(s):  
M. C. G. Passeggi ◽  
E. C. Goldberg ◽  
J. Ferrón

2005 ◽  
Vol 37 (9) ◽  
pp. 721-730 ◽  
Author(s):  
Stephen C. C. Wong ◽  
Nicholas P. Lockyer ◽  
John C. Vickerman

Sign in / Sign up

Export Citation Format

Share Document