orthologous protein
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 13)

H-INDEX

10
(FIVE YEARS 0)

2021 ◽  
Vol 7 (12) ◽  
pp. 1040
Author(s):  
Sofia Dimou ◽  
Xenia Georgiou ◽  
Eleana Sarantidi ◽  
George Diallinas ◽  
Athanasios K. Anagnostopoulos

Prof. Peñalva and co-workers provided evidence that AN11127 is related by sequence and function to Sec12 [...]


2021 ◽  
Author(s):  
Suman Hait ◽  
Sudipto Basu ◽  
Sudip Kundu

Do charge reversal mutations (CRM) naturally occur in mesophilic-thermophilic/hyperthermophilic (M-T/HT) orthologous proteins? Do they contribute to thermal stability by altering charge-charge interactions? A careful investigation on 1550 M-T/HT orthologous protein pairs with remarkable structural and topological similarity extracts the role of buried and partially exposed CRMs in enhancing thermal stability. Our findings could assist in engineering thermo-stable variants of proteins.


Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Amanda Ap. Seribelli ◽  
Patrick da Silva ◽  
Marcelo Ferreira da Cruz ◽  
Fernanda de Almeida ◽  
Miliane R. Frazão ◽  
...  

Abstract Background Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) is an important zoonotic agent worldwide. The aim of this work was to compare genetically 117 S. Typhimurium isolated from different sources over 30 years in Brazil using different genomics strategies. Results The majority of the 117 S. Typhimurium strains studied were grouped into a single cluster (≅ 90%) by the core genome multilocus sequence typing and (≅ 77%) by single copy marker genes. The phylogenetic analysis based on single nucleotide polymorphism (SNP) grouped most strains from humans into a single cluster (≅ 93%), while the strains isolated from food and swine were alocated into three clusters. The different orthologous protein clusters found for some S. Typhimurium isolated from humans and food are involved in metabolic and regulatory processes. For 26 isolates from swine the sequence types (ST) 19 and ST1921 were the most prevalent ones, and the ST14, ST64, ST516 and ST639 were also detected. Previous results typed the 91 S. Typhimurium isolates from humans and foods as ST19, ST313, ST1921, ST3343 and ST1649. The main prophages detected were: Gifsy-2 in 79 (67.5%) and Gifsy-1 in 63 (54%) strains. All of the S. Typhimurium isolates contained the acrA, acrB, macA, macB, mdtK, emrA, emrB, emrR and tolC efflux pump genes. Conclusions The phylogenetic trees grouped the majority of the S. Typhimurium isolates from humans into a single cluster suggesting that there is one prevalent subtype in Brazil. Regarding strains isolated from food and swine, the SNPs’ results suggested the circulation of more than one subtype over 30 years in this country. The orthologous protein clusters analysis revealed unique genes in the strains studied mainly related to bacterial metabolism. S. Typhimurium strains from swine showed greater diversity of STs and prophages in comparison to strains isolated from humans and foods. The pathogenic potential of S. Typhimurium strains was corroborated by the presence of exclusive prophages of this serovar involved in its virulence. The high number of resistance genes related to efflux pumps is worrying and may lead to therapeutic failures when clinical treatment is needed.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zack Saud ◽  
Alexandra M. Kortsinoglou ◽  
Vassili N. Kouvelis ◽  
Tariq M. Butt

Abstract Background More accurate and complete reference genomes have improved understanding of gene function, biology, and evolutionary mechanisms. Hybrid genome assembly approaches leverage benefits of both long, relatively error-prone reads from third-generation sequencing technologies and short, accurate reads from second-generation sequencing technologies, to produce more accurate and contiguous de novo genome assemblies in comparison to using either technology independently. In this study, we present a novel hybrid assembly pipeline that allowed for both mitogenome de novo assembly and telomere length de novo assembly of all 7 chromosomes of the model entomopathogenic fungus, Metarhizium brunneum. Results The improved assembly allowed for better ab initio gene prediction and a more BUSCO complete proteome set has been generated in comparison to the eight current NCBI reference Metarhizium spp. genomes. Remarkably, we note that including the mitogenome in ab initio gene prediction training improved overall gene prediction. The assembly was further validated by comparing contig assembly agreement across various assemblers, assessing the assembly performance of each tool. Genomic synteny and orthologous protein clusters were compared between Metarhizium brunneum and three other Hypocreales species with complete genomes, identifying core proteins, and listing orthologous protein clusters shared uniquely between the two entomopathogenic fungal species, so as to further facilitate the understanding of molecular mechanisms underpinning fungal-insect pathogenesis. Conclusions The novel assembly pipeline may be used for other haploid fungal species, facilitating the need to produce high-quality reference fungal genomes, leading to better understanding of fungal genomic evolution, chromosome structuring and gene regulation.


2021 ◽  
Author(s):  
Zack Saud ◽  
Alexandra M. Kortsinoglou ◽  
Vassili N. Kouvelis ◽  
Tariq M. Butt

Abstract Background More accurate and complete reference genomes have improved understanding of gene function, biology, and evolutionary mechanisms. Hybrid genome assembly approaches leverage benefits of both long, relatively error-prone reads from third-generation sequencing technologies and short, accurate reads from second-generation sequencing technologies, to produce more accurate and contiguous de novo genome assemblies in comparison to using either technology independently. In this study, we present a novel hybrid assembly pipeline that allowed for both mitogenome de novo assembly and telomere length de novo assembly of all 7 chromosomes of the model entomopathogenic fungus, Metarhizium brunneum . Results The improved assembly allowed for better ab initio gene prediction and a more BUSCO complete proteome set has been generated in comparison to the eight current NCBI reference Metarhizium spp. genomes. Remarkably, we note that including the mitogenome in ab initio gene prediction training improved overall gene prediction. The assembly was further validated by comparing contig assembly agreement across various assemblers, assessing the assembly performance of each tool. Genomic synteny and orthologous protein clusters were compared between Metarhizium brunneum and three other Hypocreales species with complete genomes, identifying core proteins, and listing orthologous protein clusters shared uniquely between the two entomopathogenic fungal species, so as to further facilitate the understanding of molecular mechanisms underpinning fungal-insect pathogenesis. Conclusions The novel assembly pipeline may be used for other haploid fungal species, facilitating the need to produce high-quality reference fungal genomes, leading to better understanding of fungal genomic evolution, chromosome structuring and gene regulation.


2020 ◽  
Author(s):  
Zack Saud ◽  
Alexandra M. Kortsinoglou ◽  
Vassili N. Kouvelis ◽  
Tariq M. Butt

Abstract Background More accurate and complete reference genomes have improved understanding of gene function, biology, and evolutionary mechanisms. Hybrid genome assembly approaches leverage benefits of both long, relatively error-prone reads from third-generation sequencing technologies and short, accurate reads from second-generation sequencing technologies, to produce more accurate and contiguous de novo genome assemblies in comparison to using either technology independently. In this study, we present a novel hybrid assembly pipeline that allowed for both mitogenome de novo assembly and telomere length de novo assembly of all 7 chromosomes of the model entomopathogenic fungus, Metarhizium brunneum . Results The improved assembly allowed for better ab initio gene prediction and a more BUSCO complete proteome set has been generated in comparison to the eight current NCBI reference Metarhizium spp. genomes. Remarkably, we note that including the mitogenome in ab initio gene prediction training improved overall gene prediction. The assembly was further validated by comparing contig assembly agreement across various assemblers, assessing the assembly performance of each tool. Genomic synteny and orthologous protein clusters were compared between Metarhizium brunneum and three other Hypocreales species with complete genomes, identifying core proteins, and listing orthologous protein clusters shared uniquely between the two entomopathogenic fungal species, so as to further facilitate the understanding of molecular mechanisms underpinning fungal-insect pathogenesis. Conclusions The novel assembly pipeline may be used for other haploid fungal species, facilitating the need to produce high-quality reference fungal genomes, leading to better understanding of fungal genomic evolution, chromosome structuring and gene regulation.


2020 ◽  
Author(s):  
Amanda Seribelli ◽  
Patrick da Silva ◽  
Marcelo da Cruz ◽  
Fernanda de Almeida ◽  
Miliane Frazão ◽  
...  

Abstract Background: Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) is an important zoonotic agent worldwide. In Brazil, there are few published studies that have characterized the possible differences of S. Typhimurium strains isolated from humans, foods and animal by whole genome sequencing (WGS). The aim of this work was to compare genetically 117 S. Typhimurium isolates from different sources from 30 years (1983 to 2013) in Brazil using different genomics strategies, including: phylogenetic analysis; orthologous protein clusters analysis; Multi-locus sequence typing (MLST); prophages and resistance genes screening related to efflux pumps. Results: The majority of the 117 S. Typhimurium strains studied were grouped into a single cluster (≅90%) by the genome core (cgMLST) and (≅77%) by single copy marker genes (ggTree). The different orthologous protein clusters found for some S. Typhimurium strains isolated from humans and food are involved in metabolic and regulatory processes. For 26 S. Typhimurium isolates from swine the sequence type (ST) 19 was the most common, the ST1921 was the second most prevalent and the STs 14, 64, 516 and 639 were also detected. The main prophages detected were: Gifsy-2 in 79 (67.5%) and Gifsy-1 in 63 (54%) S. Typhimurium isolates. All of the S. Typhimurium isolates contained the acrA, acrB, macA, macB, mdtK, emrA, emrB, emrR and tolC efflux pump genes. Conclusions: Phylogenetic analyses grouped the majority of the S. Typhimurium isolates into a single cluster suggesting that there is one prevalent subtype that has successful contaminated human, food and animal sources for 30 years in Brazil. The orthologous protein clusters analysis revealed unique genes in the S. Typhimurium studied mainly related to bacterial metabolism and that may be important in their pathogenicity. S. Typhimurium isolates from swine showed greater diversity of STs and prophages in comparison to S. Typhimurium strains isolated from humans and foods. The pathogenic potential of S. Typhimurium strains was corroborated by the presence of exclusive prophages of this serovar involved in their virulence. The high number of resistance genes related to efflux pumps is worrying and may lead to therapeutic failures when treatment is needed.


2020 ◽  
Author(s):  
Zack Saud ◽  
Alexandra M. Kortsinoglou ◽  
Vassili N. Kouvelis ◽  
Tariq M. Butt

Abstract BackgroundMore accurate and complete reference genomes have improved understanding of gene function, biology, and evolutionary mechanisms. Hybrid genome assembly approaches leverage benefits of both long, relatively error-prone reads from third-generation sequencing technologies and short, accurate reads from second-generation sequencing technologies, to produce more accurate and contiguous de novo genome assemblies in comparison to using either technology independently. In this study, we present a novel hybrid assembly pipeline that allowed for both mitogenome de novo assembly and telomere length de novo assembly of all 7 chromosomes of the model entomopathogenic fungus, Metarhizium brunneum. ResultsThe improved assembly allowed for better ab initio gene prediction and a more BUSCO complete proteome set has been generated in comparison to the eight current NCBI reference Metarhizium spp. genomes. Remarkably, we note that including the mitogenome in ab initio gene prediction training improved overall gene prediction. The assembly was further validated by comparing contig assembly agreement across various assemblers, assessing the assembly performance of each tool. Genomic synteny and orthologous protein clusters were compared between Metarhizium brunneum and three other Hypocreales species with complete genomes, identifying core proteins, and listing orthologous protein clusters shared uniquely between the two entomopathogenic fungal species, so as to further facilitate the understanding of molecular mechanisms underpinning fungal-insect pathogenesis. ConclusionsThe novel assembly pipeline may be used for other haploid fungal species, facilitating the need to produce high-quality reference fungal genomes, leading to better understanding of fungal genomic evolution, chromosome structuring and gene regulation.


Sign in / Sign up

Export Citation Format

Share Document