Analytical expressions for real and complex Fano parameters in a simple classical harmonic oscillator system

Author(s):  
Seiji MIZUNO

Abstract We analytically study the Fano resonance in a simple coupled oscillator system. We demonstrate directly from the equation of motion that the resonance profile observed in this system is generally described by the Fano formula with a complex Fano parameter. The analytical expressions are derived for the resonance frequency, resonance width, and Fano parameter, and the conditions under which the Fano parameter becomes a real number are examined. These expressions for the simple system are also expected to be helpful for considering various other physical systems because the Fano resonance is a general wave phenomenon.

2000 ◽  
Vol 40 (supplement) ◽  
pp. S100
Author(s):  
A. Takamatsu ◽  
T. Fujii ◽  
I. Endo

2006 ◽  
Vol 20 (11n13) ◽  
pp. 1808-1818
Author(s):  
S. KUWATA ◽  
A. MARUMOTO

It is known that para-particles, together with fermions and bosons, of a single mode can be described as an irreducible representation of the Lie (super) algebra 𝔰𝔩2(ℂ) (2-dimensional special linear algebra over the complex number ℂ), that is, they satisfy the equation of motion of a harmonic oscillator. Under the equation of motion of a harmonic oscillator, we obtain the set of the commutation relations which is isomorphic to the irreducible representation, to find that the equation of motion, conversely, can be derived from the commutation relation only for the case of either fermion or boson. If Nature admits of the existence of such a sufficient condition for the equation of motion of a harmonic oscillator, no para-particle can be allowed.


2014 ◽  
Vol 92 (4) ◽  
pp. 335-340
Author(s):  
Yan Li ◽  
Fu-Lin Zhang ◽  
Rui-Juan Gu ◽  
Jing-Ling Chen ◽  
L.C. Kwek

An approach to constructing quantum systems with dynamical symmetry is proposed. As examples, we construct generalized systems of the hydrogen atom and harmonic oscillator, which can be regarded as the systems with position-dependent mass. They have symmetries that are similar to the corresponding ones, and can be solved by using the algebraic method. We also exhibit an example of the method applied to the noncentral field.


2009 ◽  
Vol 23 (07) ◽  
pp. 975-988
Author(s):  
SHI-MIN XU ◽  
XING-LEI XU ◽  
JI-JIAN JIANG ◽  
HONG-QI LI ◽  
JI-SUO WANG

A unitary transformation matrix, n linear-composite coordinate operators and n linear-composite momentum operators are constructed for an n-particle system, and the complete and orthonormal common eigenvectors of the multi-mode linear composite momentum operators are examined by virtue of the technique of integration within an ordered product of operators. The multi-mode linear composite momentum representation is proposed, and its application to a general two-mode forced quantum harmonic oscillator system with kinetic coupling is presented for solving some dynamic problems.


Sign in / Sign up

Export Citation Format

Share Document