scholarly journals Investigation of Eigenmode-Based Coupled Oscillator Solver Applied to Ising Spin Problems

Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1745
Author(s):  
Shintaro Murakami ◽  
Okuto Ikeda ◽  
Yusuke Hirukawa ◽  
Toshiharu Saiki

We evaluate a coupled oscillator solver by applying it to square lattice (N × N) Ising spin problems for N values up to 50. The Ising problems are converted to a classical coupled oscillator model that includes both positive (ferromagnetic-like) and negative (antiferromagnetic-like) coupling between neighboring oscillators (i.e., they are reduced to eigenmode problems). A map of the oscillation amplitudes of lower-frequency eigenmodes enables us to visualize oscillator clusters with a low frustration density (unfrustrated clusters). We found that frustration tends to localize at the boundary between unfrustrated clusters due to the symmetric and asymmetric nature of the eigenmodes. This allows us to reduce frustration simply by flipping the sign of the amplitude of oscillators around which frustrated couplings are highly localized. For problems with N = 20 to 50, the best solutions with an accuracy of 96% (with respect to the exact ground state) can be obtained by simply checking the lowest ~N/2 candidate eigenmodes.

2016 ◽  
Vol 18 (31) ◽  
pp. 21213-21225 ◽  
Author(s):  
Valentin Paul Nicu

The generalised coupled oscillator (GCO) mechanism implies that the stability of the computed VCD sign should be assigned by monitoring the uncertainties in the relative orientation of the GCO fragments and in the nuclear displacement vectors, i.e. not the magnitude of the dissymmetry factor.


1993 ◽  
Vol 18 (21) ◽  
pp. 1810 ◽  
Author(s):  
Herbert G. Winful ◽  
Sean Allen ◽  
Lutfur Rahman

2006 ◽  
Vol 95 (2) ◽  
pp. 932-947 ◽  
Author(s):  
Alexey S. Kuznetsov ◽  
Nancy J. Kopell ◽  
Charles J. Wilson

Dopaminergic neurons of the midbrain fire spontaneously at rates <10/s and ordinarily will not exceed this range even when driven with somatic current injection. When driven at higher rates, these cells undergo spike failure through depolarization block. During spontaneous bursting of dopaminergic neurons in vivo, bursts related to reward expectation in behaving animals, and bursts generated by dendritic application of N-methyl-d-aspartate (NMDA) agonists, transient firing attains rates well above this range. We suggest a way such high-frequency firing may occur in response to dendritic NMDA receptor activation. We have extended the coupled oscillator model of the dopaminergic neuron, which represents the soma and dendrites as electrically coupled compartments with different natural spiking frequencies, by addition of dendritic AMPA (voltage-independent) or NMDA (voltage-dependent) synaptic conductance. Both soma and dendrites contain a simplified version of the calcium-potassium mechanism known to be the mechanism for slow spontaneous oscillation and background firing in dopaminergic cells. The compartments differ only in diameter, and this difference is responsible for the difference in natural frequencies. We show that because of its voltage dependence, NMDA receptor activation acts to amplify the effect on the soma of the high-frequency oscillation of the dendrites, which is normally too weak to exert a large influence on the overall oscillation frequency of the neuron. During the high-frequency oscillations that result, sodium inactivation in the soma is removed rapidly after each action potential by the hyperpolarizing influence of the dendritic calcium-dependent potassium current, preventing depolarization block of the spike mechanism, and allowing high-frequency spiking.


2019 ◽  
Vol 15 (8) ◽  
pp. e1006575 ◽  
Author(s):  
Gihan Weerasinghe ◽  
Benoit Duchet ◽  
Hayriye Cagnan ◽  
Peter Brown ◽  
Christian Bick ◽  
...  

2007 ◽  
Author(s):  
Jorge A. González ◽  
Jose J. Suárez-Vargas ◽  
Aneta Stefanovska ◽  
Peter V. E. McClintock

Sign in / Sign up

Export Citation Format

Share Document