scholarly journals Test of theory of foraging mode: Goldcrests, Regulus regulus , forage by high‐yield, energy‐expensive hovering flight when food is abundant but use low‐yield, low‐cost methods when food is scarce

Author(s):  
Rolf Åke Norberg
2019 ◽  
Vol 16 (8) ◽  
pp. 676-682
Author(s):  
Ankusab Noorahmadsab Nadaf ◽  
Kalegowda Shivashankar

The polycyclic dihydropyridine nucleus represents the heterocyclic system of invaluable core motifs with wide applications in chemical, biological and physical properties. Although this kind of compounds have been extensively synthesized by other groups, the synthesis of these compounds under CFL light intensity were not explored. The synthesis of polycyclic dihydropyridine derivatives were achieved through the reaction of 4-hydroxycoumarin, aromatic aldehydes and ammonium acetate under CFL light irradiation conditions. A series of polycyclic dihydropyridine derivatives were prepared under CFL light irradiation conditions with high yield, short reaction time, ambient condition and without the use of catalyst. The results displayed an efficient method for the synthesis of polycyclic dihydropyridine derivatives. Clean profile, short reaction time, low cost and use of CFL light intensity instead of catalyst making it a genuinely green protocol.


2019 ◽  
Vol 9 (2) ◽  
pp. 157-160
Author(s):  
Ali Hasani

Background: Laser ablation method has high-yield and pure SWCNHs. On the other hand, arc discharge methods have low-cost production of SWCNHs. However, these techniques have more desirable features, they need special expertness to use high power laser or high current discharge that either of them produces very high temperature. As for the researches, the temperatures of these techniques are higher than 4727°C to vaporize the graphite. So, to become aware of the advantages of SWCNHs, it is necessary to find a new way to synthesize SWCNHs at a lower temperature. In other words, reaction field can be expandable at a moderate temperature. This paper reports a new way to synthesize SWCNHs at an extremely reduced temperature. Methods: According to this study, the role of N2 is the protection of the copper holder supporting the graphite rod by increasing heat transfer from the holder. After the current of 70 A was supplied to the system, the temperature of graphite rod was raised to 1600°C. It is obvious that this temperature is somehow higher than the melting point of palladium, 1555°C, and much lower than graphite melting point, 3497°C. Results: Based on the results, there are transitional precursors simultaneous with the SWCNHs. This composition can be created by distortion of the primary SWCNTs at the higher temperature. Subsequently, each SWCNTs have a tendency to be broken into individual horns. With increasing the concentration of the free horns, bud-like SWCNHs can be produced. Moreover, there are individual horns almost separated from the mass of single wall carbon nanohorns. This structure is not common in SWCNHs synthesized by the usual method such as arc discharge or laser ablation. Through these regular techniques, SWCNHs are synthesized as cumulative particles with diameters about 30-150 nm. Conclusion: A simple heating is needed for SWCNTs transformation to SWCNHs with the presence of palladium as catalyst. The well-thought-out mechanism for this transformation is that SWCNTs were initially changed to highly curled shape, and after that were formed into small independent horns. The other rout to synthesize SWCNHs is the pyrolysis of palm olein at 950°C with the assistance of zinc nitrate and ferrocene. Palm olein was used as a promising, bio-renewable and inexpensive carbon source for the production of carbon nanohorns.


2021 ◽  
Vol 22 (3) ◽  
pp. 1124
Author(s):  
Mafalda Giovanna Reccia ◽  
Floriana Volpicelli ◽  
Eirkiur Benedikz ◽  
Åsa Fex Svenningsen ◽  
Luca Colucci-D’Amato

Neural stem cells represent a powerful tool to study molecules involved in pathophysiology of Nervous System and to discover new drugs. Although they can be cultured and expanded in vitro as a primary culture, their use is hampered by their heterogeneity and by the cost and time needed for their preparation. Here we report that mes-c-myc A1 cells (A1), a neural cell line, is endowed with staminal properties. Undifferentiated/proliferating and differentiated/non-proliferating A1 cells are able to generate neurospheres (Ns) in which gene expression parallels the original differentiation status. In fact, Ns derived from undifferentiated A1 cells express higher levels of Nestin, Kruppel-like factor 4 (Klf4) and glial fibrillary protein (GFAP), markers of stemness, while those obtained from differentiated A1 cells show higher levels of the neuronal marker beta III tubulin. Interestingly, Ns differentiation, by Epidermal Growth Factors (EGF) and Fibroblast Growth Factor 2 (bFGF) withdrawal, generates oligodendrocytes at high-yield as shown by the expression of markers, Galactosylceramidase (Gal-C) Neuron-Glial antigen 2 (NG2), Receptor-Interacting Protein (RIP) and Myelin Basic Protein (MBP). Finally, upon co-culture, Ns-A1-derived oligodendrocytes cause a redistribution of contactin-associated protein (Caspr/paranodin) protein on neuronal cells, as primary oligodendrocytes cultures, suggesting that they are able to form compact myelin. Thus, Ns-A1-derived oligodendrocytes may represent a time-saving and low-cost tool to study the pathophysiology of oligodendrocytes and to test new drugs.


2021 ◽  
pp. 2101036
Author(s):  
Hengyi Lu ◽  
Wen Shi ◽  
Fei Zhao ◽  
Wenjing Zhang ◽  
Peixin Zhang ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2910
Author(s):  
Chaoyi Ding ◽  
Chun Liu ◽  
Ligang Zhang ◽  
Di Wu ◽  
Libin Liu

The high cost of development and raw materials have been obstacles to the widespread use of titanium alloys. In the present study, the high-throughput experimental method of diffusion couple combined with CALPHAD calculation was used to design and prepare the low-cost and high-strength Ti-Al-Cr system titanium alloy. The results showed that ultra-fine α phase was obtained in Ti-6Al-10.9Cr alloy designed through the pseudo-spinodal mechanism, and it has a high yield strength of 1437 ± 7 MPa. Furthermore, application of the 3D strength model of Ti-6Al-xCr alloy showed that the strength of the alloy depended on the volume fraction and thickness of the α phase. The large number of α/β interfaces produced by ultra-fine α phase greatly improved the strength of the alloy but limited its ductility. Thus, we have demonstrated that the pseudo-spinodal mechanism combined with high-throughput diffusion couple technology and CALPHAD was an efficient method to design low-cost and high-strength titanium alloys.


2015 ◽  
Vol 44 (3) ◽  
pp. 1039-1045 ◽  
Author(s):  
Mohammad Mahdi Najafpour ◽  
Emad Amini
Keyword(s):  
Low Cost ◽  
Mn Oxide ◽  

Nanolayered Mn oxides have been prepared by a very simple, low-cost and high-yield method using soap, KOH, MnCl2and H2O2.


Author(s):  
Mohd Azril Riduan ◽  
Mohd Jumain Jalil ◽  
Intan Suhada Azmi ◽  
Afifudin Habulat ◽  
Danial Nuruddin Azlan Raofuddin ◽  
...  

Background: Greener epoxidation by using vegetable oil to create an eco-friendly epoxide is being studied because it is a more cost-effective and environmentally friendly commodity that is safer than non-renewable materials. The aim of this research is to come up with low-cost solutions for banana trunk acoustic panels with kinetic modelling of epoxy-based palm oil. Method: In this study, the epoxidation of palm oleic acid was carried out by in situ performic acid to produce epoxidized palm oleic acid. Results: Banana trunk acoustic panel was successfully innovated based on the performance when the epoxy was applied. Lastly, a mathematical model was developed by using the numerical integration of the 4th order Runge-Kutta method, and the results showed that there is a good agreement between the simulation and experimental data, which validates the kinetic model. Conclusion: Overall, the peracid mechanism was effective in producing a high yield of epoxy from palm oleic acid that is useful for the improvement of acoustic panels based on the banana trunk.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Avtar Singh ◽  
Amanjot Kaur ◽  
Anita Dua ◽  
Ritu Mahajan

Xylano-pectino-cellulolytic enzymes are valuable enzymes of the industrial sector. In our earlier study, we have reported a novel and cost effective methodology for the qualitative screening of cellulase-free xylano-pectinolytic microorganisms by replacing the commercial, highly expensive substrates with agricultural residues, but the microorganisms with xylanolytic, pectinolytic, cellulolytic, xylano-pectinolytic, xylano-cellulolytic, pectino-cellulolytic, and xylano-pectino-cellulolytic potential were obtained. The probability of getting the desired combination was low, so efforts were made to further improve this cost effective methodology for obtaining the high yield of the microbes capable of producing desired combination of enzymes. By inclusion of multiple enrichment steps in sequence, using only practically low cost substrates and without any nutrient media till primary screening stage, this improved novel protocol for screening gave only the desired microorganisms with xylano-pectino-cellulolytic activity. Using this rapid, efficient, cost effective, and improved methodology, microbes with required combination of enzymes can be obtained and the probability of getting the desired microorganisms is cent percent. This is the first report presenting the methodology for the isolation of xylano-pectino-cellulolytic positive microorganisms at low cost and consuming less time.


1993 ◽  
Vol 115 (1) ◽  
pp. 63-70 ◽  
Author(s):  
Sa-Yoon Kang ◽  
H. Xie ◽  
Y. C. Lee

Flip-Chip connections using gold-to-gold, gold-to-aluminum, or gold-to-solder bondings or contacts enhanced by epoxy are low-cost alternatives to soldering. To assist their technology advancements, we have developed yield models for a representative assembly process with flip-chip, thermocompression bondings. Based on bonding mechanics, a physical yield model has been developed to characterize the process. Then, a fuzzy logic model has been established to improve the modeling’s accuracy by including experimental data. The physical yield model can predict the assembly yield as a function of forces and planarities of the end effector, bump height variations, bump geometries, mechanical properties corresponding to different materials and temperatures, and distribution patterns of bumps. Consistent with our experimental experience, the calculated force level for a high-yield process was around 3000 gmf for a 30-gold-bump chip with a bump diameter of 60 μm and a height of 50 μm. The fuzzy logic model can be trained and adjusted by the results of physical models and experiments. It correlates very well to the nonlinear relationships between the yield and the assembly parameters, and has a self-learning capability to update itself with new data. Such capabilities have been demonstrated by studying the bonding on a substrate with or without a compliant layer.


2010 ◽  
Vol 2010 (DPC) ◽  
pp. 000425-000445
Author(s):  
Paul Siblerud ◽  
Rozalia Beica ◽  
Bioh Kim ◽  
Erik Young

The development of IC technology is driven by the need to increase performance and functionality while reducing size, power and cost. The continuous pressure to meet those requirements has created innovative, small, cost-effective 3-D packaging technologies. 3-D packaging can offer significant advantages in performance, functionality and form factor for future technologies. Breakthrough in wafer level packaging using through silicon via technology has proven to be technologically beneficial. Integration of several key and challenging process steps with a high yield and low cost is key to the general adoption of the technology. This paper will outline the breakthroughs in cost associated with an iTSV or Via-Mid structure in a integrated process flow. Key process technologies enabling 3-D chip:Via formationInsulator, barrier and seed depositionCopper filling (plating),CMPWafer thinningDie to Wafer/chip alignment, bonding and dicing This presentation will investigate these techniques that require interdisciplinary coordination and integration that previously have not been practiced. We will review the current state of 3-D interconnects and the of a cost effective Via-first TSV integrated process.


Sign in / Sign up

Export Citation Format

Share Document