paleodietary reconstruction
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 2)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Raquel Hernando ◽  
Beatriz Gamarra ◽  
Ashley McCall ◽  
Olivia Cheronet ◽  
Daniel Fernandes ◽  
...  

AbstractDietary reconstruction is used to make inferences about the subsistence strategies of ancient human populations, but it may also serve as a proxy to characterise their diverse cultural and technological manifestations. Dental microwear and stable isotope analyses have been shown to be successful techniques for paleodietary reconstruction of ancient populations but, despite yielding complementary dietary information, these techniques have rarely been combined within the same study. Here we present for the first time a comprehensive approach to interpreting ancient lifeways through the results of buccal and occlusal microwear, and δ13C and δ15N isotope analyses applied to the same individuals of prehistoric populations of Hungary from the Middle Neolithic to the Late Bronze Age periods. This study aimed to (a) assess if the combination of techniques yields a more precise assessment of past dietary and subsistence practices, and (b) contribute to our understanding of the dietary patterns of the prehistoric Hungarian populations. Overall, no correlations between microwear and δ13C and δ15N isotope variables were observed, except for a relationship between nitrogen and the vertical and horizontal index. However, we found that diachronic differences are influenced by the variation within the period. Particularly, we found differences in microwear and isotope variables between Middle Neolithic sites, indicating that there were different dietary practices among those populations. Additionally, microwear results suggest no changes in the abrasiveness of the diet, neither food processing methods, despite higher C4 plant resource consumption shown by carbon isotopic signal. Thus, we demonstrate that the integration of dental microwear and carbon and nitrogen stable isotope methodologies can provide complementary information for making inferences about paleodietary habits.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ramiro Barberena ◽  
Lumila Menéndez ◽  
Petrus J. le Roux ◽  
Erik J. Marsh ◽  
Augusto Tessone ◽  
...  

AbstractWe present isotopic and morphometric evidence suggesting the migration of farmers in the southern Andes in the period AD 1270–1420, leading up to the Inka conquest occurring ~ AD 1400. This is based on the interdisciplinary study of human remains from archaeological cemeteries in the Andean Uspallata Valley (Argentina), located in the southern frontier of the Inka Empire. The studied samples span AD 800–1500, encompassing the highly dynamic Late Intermediate Period and culminating with the imperial expansion. Our research combines a macro-regional study of human paleomobility and migration based on a new strontium isoscape across the Andes that allows identifying locals and migrants, a geometric morphometric analysis of cranio-facial morphology suggesting separate ancestral lineages, and a paleodietary reconstruction based on stable isotopes showing that the migrants had diets exceptionally high in C4 plants and largely based on maize agriculture. Significantly, this migration influx occurred during a period of regional demographic increase and would have been part of a widespread period of change in settlement patterns and population movements that preceded the Inka expansion. These processes increased local social diversity and may have been subsequently utilized by the Inka to channel interaction with the local societies.


2018 ◽  
Author(s):  
Enquye W. Negash ◽  
◽  
Jonathan G. Wynn ◽  
Zeresenay Alemseged ◽  
Matt Sponheimer ◽  
...  

2016 ◽  
Vol 442 ◽  
pp. 110-127 ◽  
Author(s):  
Gina M. Semprebon ◽  
Florent Rivals ◽  
Nikos Solounias ◽  
Richard C. Hulbert

2015 ◽  
Vol 88 ◽  
pp. 127-136 ◽  
Author(s):  
Enquye W. Negash ◽  
Zeresenay Alemseged ◽  
Jonathan G. Wynn ◽  
Zelalem K. Bedaso

2014 ◽  
Vol 112 (2) ◽  
pp. 430-435 ◽  
Author(s):  
Jeremy E. Martin ◽  
Derek Vance ◽  
Vincent Balter

Geochemical inferences on ancient diet using bone and enamel apatite rely mainly on carbon isotope ratios (δ13C) and to a lesser extent on strontium/calcium (Sr/Ca) and barium/calcium (Ba/Ca) elemental ratios. Recent developments in nontraditional stable isotopes provide an unprecedented opportunity to use additional paleodietary proxies to disentangle complex diets such as omnivory. Of particular relevance for paleodietary reconstruction are metals present in large quantity in bone and enamel apatite, providing that biologically mediated fractionation processes are constrained. Calcium isotope ratios (δ44Ca) meet these criteria but exhibit complex ecological patterning. Stable magnesium isotope ratios (δ26Mg) also meet these criteria but a comprehensive understanding of its variability awaits new isotopic data. Here, 11 extant mammal species of known ecology from a single locality in equatorial Africa were sampled for tooth enamel and, together with vegetation and feces, analyzed for δ26Mg, δ13C, Sr/Ca, and Ba/Ca ratios. The results demonstrate that δ26Mg incorporated in tooth enamel becomes heavier from strict herbivores to omnivores/faunivores. Using data from experimentally raised sheep, we suggest that this26Mg enrichment up the trophic chain is due to a26Mg enrichment in muscle relative to bone. Notably, it is possible to distinguish omnivores from herbivores, using δ26Mg coupled to Ba/Ca ratios. The potential effects of metabolic and dietary changes on the enamel δ26Mg composition remain to be explored but, in the future, multiproxy approaches would permit a substantial refinement of dietary behaviors or enable accurate trophic reconstruction despite specimen-limited sampling, as is often the case for fossil assemblages.


Radiocarbon ◽  
2009 ◽  
Vol 51 (2) ◽  
pp. 601-611 ◽  
Author(s):  
A Zazzo ◽  
J-F Saliège ◽  
A Person ◽  
H Boucher

Over the past decade, radiocarbon dating of the carbonate contained in the mineral fraction of calcined bones has emerged as a viable alternative to dating skeletal remains in situations where collagen is no longer present. However, anomalously low δ13C values have been reported for calcined bones, suggesting that the mineral fraction of bone is altered. Therefore, exchange with other sources of carbon during heating cannot be excluded. Here, we report new results from analyses on cremated bones found in archaeological sites in Africa and the Near East, as well as the results of several experiments aiming at improving our understanding of the fate of mineral and organic carbon of bone during heating. Heating of modern bone was carried out at different temperatures, for different durations, and under natural and controlled conditions, and the evolution of several parameters (weight, color, %C, %N, δ13C value, carbonate content, crystallinity indexes measured by XRD and FTIR) was monitored. Results from archaeological sites confirm that calcined bones are unreliable for paleoenvironmental and paleodietary reconstruction using stable isotopes. Experimental results suggest that the carbon remaining in bone after cremation likely comes from the original inorganic pool, highly fractionated due to rapid recrystallization. Therefore, its reliability for 14C dating should be seen as close to that of tooth enamel, due to crystallographic properties of calcined bones.


Sign in / Sign up

Export Citation Format

Share Document