wireless sensing system
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 22)

H-INDEX

9
(FIVE YEARS 3)

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6386
Author(s):  
Huy-Viet Le ◽  
Tae-Uk Kim ◽  
Suleman Khan ◽  
Jun-Young Park ◽  
Jong-Woong Park ◽  
...  

This study proposes the development of a wireless sensor system integrated with smart ultra-high performance concrete (UHPC) for sensing and transmitting changes in stress and damage occurrence in real-time. The smart UHPC, which has the self-sensing ability, comprises steel fibers, fine steel slag aggregates (FSSAs), and multiwall carbon nanotubes (MWCNTs) as functional fillers. The proposed wireless sensing system used a low-cost microcontroller unit (MCU) and two-probe resistance sensing circuit to capture change in electrical resistance of self-sensing UHPC due to external stress. For wireless transmission, the developed wireless sensing system used Bluetooth low energy (BLE) beacon for low-power and multi-channel data transmission. For experimental validation of the proposed smart UHPC, two types of specimens for tensile and compression tests were fabricated. In the laboratory test, using a universal testing machine, the change in electrical resistivity was measured and compared with a reference DC resistance meter. The proposed wireless sensing system showed decreased electrical resistance under compressive and tensile load. The fractional change in resistivity (FCR) was monitored at 39.2% under the maximum compressive stress and 12.35% per crack under the maximum compressive stress tension. The electrical resistance changes in both compression and tension showed similar behavior, measured by a DC meter and validated the developed integration of wireless sensing system and smart UHPC.


2021 ◽  
Vol 11 (13) ◽  
pp. 5858
Author(s):  
Aristotelis C. Tagarakis ◽  
Dimitrios Kateris ◽  
Remigio Berruto ◽  
Dionysis Bochtis

Wireless sensor networks (WSNs) can be reliable tools in agricultural management. In this work, a low cost, low power consumption, and simple wireless sensing system dedicated for agricultural environments is presented. The system is applicable to small to medium sized fields, located anywhere with cellular network coverage, even in isolated rural areas. The novelty of the developed system lies in the fact that it uses a dummy device as Coordinator which through simple but advanced programming can receive, process, and send data packets from all End-nodes to the cloud via a 4G cellular network. Furthermore, it is energy independent, using solar energy harvesting panels, making it feasible to operate in remote, isolated fields. A star topology was followed for the sake of simplification, low energy demands and increased network reliability. The developed system was tested and evaluated in laboratory and real field environment with satisfactory operation in terms of independence, and operational reliability concerning packet losses, communication range (>250 m covering fields up to 36 ha), energy autonomy, and uninterrupted operation. The network can support up to seven nodes in a 30 min data acquisition cycle. These results confirmed the potential of this system to serve as a viable option for monitoring environmental, soil, and crop parameters.


Author(s):  
Emerson Toledo Júnior ◽  
Alexandre Cury ◽  
Jánes Landre Júnior

Abstract Structural Health Monitoring (SHM) programs play an essential task in the field of civil engineering, especially for assessing safety conditions involving large structures such as viaducts, bridges, stadiums, and tall buildings. In fact, some of these structures are monitored 24 hours a day, 7 days a week, to supply dynamic measurements that can be used for the identification of structural problems, e.g., presence of cracks, excessive vibration, damage, among others. SHM programs may provide automated assessment of structural health by processing vibration data obtained from sensors attached to the structure. Frequently, SHM uses wired systems, which are usually expensive due to the necessity of continuous maintenance and are not always suitable for sensing remote structures. Conversely, commercial wireless systems often demand high implementation costs. Hence, this paper proposes the use of a low-cost wireless sensing system based on the single board computer Raspberry Pi, which significantly reduces implementation expenses while keeping data’s integrity. The wireless communication is performed in real-time through a local wireless network, responsible for sending and receiving vibration data. The proposed system is validated by comparing its results with a commercial wired system through a series of controlled experimental applications. The results suggest that the proposed system is suitable for civil SHM applications.


Author(s):  
Chia-Chi Li ◽  
Vikram K. Ramanna ◽  
Daniel Webber ◽  
Cole Hunter ◽  
Tyler Hack ◽  
...  

Author(s):  
Filippo Giammaria Praticò ◽  
Rosario Fedele ◽  
Sara Pizzi ◽  
Giuseppe Araniti

Future smart cities that will exploit the forthcoming fifth-generation (5G) network will strongly contribute to the development of intelligent transport systems, which will be able to effectively manage changing infrastructural conditions, and to timely exchange crucial information with different stakeholders to improve sustainability and safety. To this end, smart wireless sensing nodes can be effectively exploited. Consequently, the objectives of this study are: 1) to describe the setup and the main potentialities of a wireless sensing system designed for monitoring the environmental and structural conditions on road pavements; 2) to provide an overview about the capability of the 5G network to enable the data exchange required by the designed system. Each sensing node includes different sensors, and is able to send the data gathered from the resource-constrained sensors to a web server used for data processing. Vibrational-, acoustical-, and environmental-related data are used to control traffic pollution, road availability and structural status. The paper describes the in-lab tests carried out on asphalt concrete samples to: i) calibrate the sensors; ii) define structural and environmental thresholds. Results show that the tested node is able to provide reliable data that can be used for the above-described purposes.


ACS Sensors ◽  
2020 ◽  
Vol 5 (7) ◽  
pp. 2036-2043 ◽  
Author(s):  
Lei Dong ◽  
Paolo S. Ravaynia ◽  
Qing-An Huang ◽  
Andreas Hierlemann ◽  
Mario M. Modena

Sign in / Sign up

Export Citation Format

Share Document