lowland amazonia
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 1)

H-INDEX

16
(FIVE YEARS 0)

2020 ◽  
Author(s):  
Cecile Gautheron ◽  
Cristiana Cabriolu ◽  
Fabiano Pupim ◽  
Mauricio Parra ◽  
Stéphane Schwartz ◽  
...  

<p>The landscape in lowland Amazonia is shaped by large rivers, whose depositional-erosive dynamics built fluvial terraces covered by upland forests. Thus, fluvial deposits distributed across lowland Amazonia are of crucial relevance since they represent the best accessible archives to study the history of environment and climate change. The timing of the assembly of the modern transcontinental Amazon River is considered a key event in the landscape evolution of Amazonia, however, proposed ages range from Miocene, early Pliocene to Pliocene/Pleistocene. Therefore, regional stratigraphic correlations need to improve to ensure a better understanding of reconstructions of past conditions in Amazonia during the Cenozoic. Yet, these are difficult due to the lack of absolute ages to constrain phases of sediment deposition or erosion and weathering. In lowland central Amazonia, past environmental conditions are recorded in the Alter do Chão and Novo Remanso Formations. Both units are dominated by sandy and highly oxidized sediments with scarce paleontological remains complicating the application of biostratigraphy dating methods. The Alter do Chão and Novo Remanso Formations are well exposed in the left margin of the Solimões-Amazon River main stem and show remarkable zones rich in supergene iron weathering products, which has been used to define the stratigraphic boundaries among the Alter do Chão Formation, Novo Remanso Formation and overlying sediments. In this study, we use the (U-Th-Sm)/He dating method on goethite and hematite grains to determine the age of iron-enrichment layers and duricrusts that mark boundary surfaces used to define the stratigraphic framework of the Alter do Chão and Novo Remanso formations. The (U-Th-Sm)/He ages allow to improve chronological constraints for both formations and to discuss the timing of fluvial terraces building and weathering conditions in central Amazonia through time.</p>


Biotropica ◽  
2018 ◽  
Vol 50 (5) ◽  
pp. 758-767 ◽  
Author(s):  
Pablo Pérez Chaves ◽  
Kalle Ruokolainen ◽  
Hanna Tuomisto

2018 ◽  
Vol 15 (1) ◽  
pp. 279-295 ◽  
Author(s):  
Corina Buendía ◽  
Axel Kleidon ◽  
Stefano Manzoni ◽  
Björn Reu ◽  
Amilcare Porporato

Abstract. Phosphorus (P) availability decreases with soil age and potentially limits the productivity of ecosystems growing on old and weathered soils. Despite growing on ancient soils, ecosystems of lowland Amazonia are highly productive and are among the most biodiverse on Earth. P eroded and weathered in the Andes is transported by the rivers and deposited in floodplains of the lowland Amazon basin creating hotspots of P fertility. We hypothesize that animals feeding on vegetation and detritus in these hotspots may redistribute P to P-depleted areas, thus contributing to dissipate the P gradient across the landscape. Using a mathematical model, we show that animal-driven spatial redistribution of P from rivers to land and from seasonally flooded to terra firme (upland) ecosystems may sustain the P cycle of Amazonian lowlands. Our results show how P imported to land by terrestrial piscivores in combination with spatial redistribution of herbivores and detritivores can significantly enhance the P content in terra firme ecosystems, thereby highlighting the importance of food webs for the biogeochemical cycling of Amazonia.


Author(s):  
Alexandra Y. Aikhenvald

Lowland Amazonia is the locus of substantial linguistic diversity in terms of genetic affiliation, language structure, and numbers of languages. This chapter will focus on the distribution of types of polysynthetic patterns within Lowland Amazonia, with special attention to the spread, and the types, of noun incorporation. The highest concentration of polysynthetic languages in Amazonia is the region south of the Amazon River, spanning adjacent regions of Peru, Brazil, and Bolivia. Polysynthetic patterns can be reconstructed for the protolanguages of some families, such as Panoan, Harakmbet, and possibly Arawá. Polysynthetic patterns in Arawak family (by far the largest in terms of its geographical spread) are often due to areal diffusion. We will focus on a number of mechanisms for the development of polysynthesis in established linguistic areas, for example the Vaupés River Basin linguistic area, and on a number of established instances of intensive language contact.


2016 ◽  
Vol 43 (12) ◽  
pp. 2400-2411 ◽  
Author(s):  
Hanna Tuomisto ◽  
Gabriel M. Moulatlet ◽  
Henrik Balslev ◽  
Thaise Emilio ◽  
Fernando O. G. Figueiredo ◽  
...  
Keyword(s):  

2016 ◽  
Vol 141 ◽  
pp. 52-64 ◽  
Author(s):  
M.B. Bush ◽  
A. Correa-Metrio ◽  
C.H. McMichael ◽  
S. Sully ◽  
C.R. Shadik ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (7) ◽  
pp. e0129818 ◽  
Author(s):  
Maíra Benchimol ◽  
Carlos A. Peres

2014 ◽  
Vol 281 (1777) ◽  
pp. 20132475 ◽  
Author(s):  
C. H. McMichael ◽  
M. W. Palace ◽  
M. B. Bush ◽  
B. Braswell ◽  
S. Hagen ◽  
...  

The extent and intensity of pre-Columbian impacts on lowland Amazonia have remained uncertain and controversial. Various indicators can be used to gauge the impact of pre-Columbian societies, but the formation of nutrient-enriched terra preta soils has been widely accepted as an indication of long-term settlement and site fidelity. Using known and newly discovered terra preta sites and maximum entropy algorithms (Maxent), we determined the influence of regional environmental conditions on the likelihood that terra pretas would have been formed at any given location in lowland Amazonia. Terra pretas were most frequently found in central and eastern Amazonia along the lower courses of the major Amazonian rivers. Terrain, hydrologic and soil characteristics were more important predictors of terra preta distributions than climatic conditions. Our modelling efforts indicated that terra pretas are likely to be found throughout ca 154 063 km 2 or 3.2% of the forest. We also predict that terra preta formation was limited in most of western Amazonia. Model results suggested that the distribution of terra preta was highly predictable based on environmental parameters. We provided targets for future archaeological surveys under the vast forest canopy and also highlighted how few of the long-term forest inventory sites in Amazonia are able to capture the effects of historical disturbance.


Sign in / Sign up

Export Citation Format

Share Document