Full field vibration measurements on a cantilever beam under impact using visible and infrared deflectometry

2021 ◽  
Vol 183 ◽  
pp. 108294
Author(s):  
Olivier Robin ◽  
Patrick O'Donoughue ◽  
Alain Berry ◽  
Vincent Farley ◽  
Kishan Prithipaul
Author(s):  
Stephane Boubanga Tombet ◽  
Olivier Robin ◽  
Alain Berry ◽  
Vincent Farley ◽  
Patrick O'Donoughue ◽  
...  

Author(s):  
Gen Fu ◽  
Alexandrina Untaroiu ◽  
Walter O’Brien

The measurement of the aeromechanical response of the fan blades is important to quantifying their integrity. The accurate knowledge of the response at critical locations of the structure is crucial when assessing the structural condition. A reliable and low cost measuring technique is necessary. Currently, sensors can only provide the measured data at several discrete points. A significant number of sensors may be required to fully characterize the aeromechanical response of the blades. However, the amount of instrumentation that can be placed on the structure is limited due to data acquisition system limitations, instrumentation accessibility, and the effect of the instrumentation on the measured response. From a practical stand point, it is not possible to place sensors at all the critical locations for different excitations. Therefore, development of an approach that derives the full strain field response based on a limited set of measured data is required. In this study, the traditional model reduction method is used to expand the full strain field response of the structure by using a set of discrete measured data. Two computational models are developed and used to verify the expansion approach. The solution of the numerical model is chosen as the reference solution. In addition, the numerical model also provides the mode shapes of the structure. In the expansion approach, this information is used to develop the algorithm. First, a cantilever beam model is created. The influences of the sensor location, number of sensors and the number of modes included are analyzed using this cantilever beam model. The expanded full field response data is compared with the reference solution to evaluate the expansion procedure. The rotor 67 blade model is then used to test the expansion method. The results show that the expanded full field data is in good agreement with the calculated data. The expansion algorithm can be used for the full field strain by using the limited sets of strain data.


2018 ◽  
Vol 144 (7) ◽  
pp. 04018054 ◽  
Author(s):  
Charles Dorn ◽  
Sudeep Dasari ◽  
Yongchao Yang ◽  
Charles Farrar ◽  
Garrett Kenyon ◽  
...  

2021 ◽  
Vol 143 (2) ◽  
Author(s):  
Alain Le Bot ◽  
Olivier Robin ◽  
Kevin Rouard ◽  
Alain Berry

Abstract A successful application of statistical energy analysis for analyzing energy exchanges between weakly coupled subsystems theoretically requires a diffuse vibrational field in all subsystems. So as to verify the conditions of establishment of the diffuse field in practice, full-field vibration measurements were conducted with a high-speed camera on a simply supported rectangular plate excited by a wide band random force. The results constitute an experimental investigation of the diffuse field region in the frequency-structural damping domain and a validation of previously obtained numerical results. The domain of the diffuse field is confined to high frequencies and low damping, with limits than can be easily defined. However, it is shown that the vibrational field is not fully spatially homogeneous due to enhancement of response induced by the effect of coherence of rays. Theoretical values of the enhancement factor obtained using an image source analysis are confirmed by measurement results.


Sign in / Sign up

Export Citation Format

Share Document