inorganic geochemistry
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 14)

H-INDEX

17
(FIVE YEARS 1)

2021 ◽  
Vol 8 ◽  
Author(s):  
Matthias Troch ◽  
Sebastien Bertrand ◽  
Benjamin Amann ◽  
Dawei Liu ◽  
Juan A. Placencia ◽  
...  

Fjord sediments are increasingly used as high-resolution archives of climate and environmental change, including variations in glacier mass balance and terrestrial hydrology. To accurately interpret such sediment records, it is crucial to comprehend sediment transport processes and determine sediment provenance. With this in mind, our main objective is to identify cost-effective parameters that can be used to reconstruct relative variations in the origin of sediments deposited in the Baker-Martínez fjord system, which is located between the Northern (NPI) and Southern (SPI) Patagonian Icefields. We focus on estimating the proportions of sediment derived from each icefield, taking advantage of the clearly distinct lithologies that underlie NPI (Patagonian Batholith) and SPI (Eastern Andean Metamorphic Complex) glaciers. The magnetic susceptibility and inorganic geochemistry of 21 surface sediment samples collected along the fjord system and that of suspended sediment samples from the four main rivers that discharge at its heads were investigated. Results indicate that sediments derived from the NPI are characterized by higher magnetic susceptibility and log(Ti/Al) values than those from the SPI, reflecting the mafic nature of the batholith. In fjords that receive contributions from both the NPI and SPI, magnetic susceptibility and log(Ti/Al) primarily reflect sediment provenance. In fjords receiving sediment from only one icefield, however, these parameters are positively correlated with grain size and reflect the progressive settling of particles from the surficial plume. Our results suggest that magnetic susceptibility and log(Ti/Al) can be used to reconstruct sediment provenance within the Baker-Martínez fjord system, but that only log(Ti/Al) can provide quantitative estimates of the proportions of sediment derived from each icefield. Ultimately, applying these provenance indicators to long sediment cores from the Baker-Martínez fjord system could allow reconstructing relative variations in sediment input from each icefield, which may in turn be interpreted as changes in river discharge and/or glacier mass balance.


Geochemistry ◽  
2021 ◽  
pp. 149-160
Author(s):  
Sathasivam Pratheep Kumar ◽  
Triveni Rajashekhar Mandlimath ◽  
M. Ramesh

2021 ◽  
Vol 61 (2) ◽  
pp. 588
Author(s):  
Betina Bendall ◽  
Anne Forbes ◽  
Tony Hill

The Otway Basin comprises a significant part of the eastern Australian Southern Rift System, a divergent passive continental margin formed during the Cretaceous separation of the Australian and Antarctic continents. Early rifting activity resulted in the development of many half grabens within the Otway Basin, which are largely infilled by sediments of the Casterton Formation and Crayfish Group. Despite over 20 years of exploration and hydrocarbon production from these units however, their lithostratigraphic characterisation and nomenclature remain ambiguous, with structural complexity and prevalent lateral facies changes leading to confusion in their basin-wide correlation. Deposited in a largely non-marine, fluvial/lacustrine environment, repeating cycles of sandstones and shales of the Crayfish Group can be difficult to resolve using petrology, palynology and wireline log data. The use of chemostratigraphy is favoured as an investigative tool in this situation since changes in provenance, lithic composition, facies, weathering and diagenesis are reflected in the mineralogy of the sediments, resulting in variations in their inorganic geochemistry. Uniform sedimentary successions can thus potentially be differentiated into unique sequences and packages based on their characteristic geochemistry, aiding in the resolution of complex structural relationships and facies changes. In this study, we present new inorganic geochemistry data for four key wells in the South Australian (SA) Penola Trough and interpret the geochemistry data consistent with, and building on, the chemostratigraphic schema of Forbes et al. to demonstrate its utility and robustness. We then undertake inter-well wireline log correlations across the SA Penola Trough using the wells with chemostratigraphic data as controls.


2020 ◽  
Vol 5 (1) ◽  
pp. 81
Author(s):  
Bokanda Ekoko Eric ◽  
Njilah Isaac Konfor ◽  
Ekomane Emile ◽  
Philip Fralick ◽  
Bisse Salomon Betrant ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document