dual adaptation
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 11)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
Marion Forano ◽  
Raphael Schween ◽  
Jordan A Taylor ◽  
Mathias Hegele ◽  
David W Franklin

Switching between motor tasks requires accurate adjustments for changes in dynamics (grasping a cup) or sensorimotor transformations (moving a computer mouse). Dual-adaptation studies have investigated how learning of context-dependent dynamics or transformations is enabled by sensory cues. However, certain cues, such as color, have shown mixed results. We propose that these mixed results may arise from two major classes of cues: "direct" cues, which are part of the dynamic state and "indirect" cues, which are not. We hypothesized that explicit strategies would primarily account for adaptation for an indirect color cue but would be limited to simple tasks while a direct visual separation cue would allow implicit adaptation regardless of task complexity. To test this idea, we investigated the relative contribution of implicit and explicit learning in relation to contextual cue type (colored or visually shifted workspace) and task complexity (one or eight targets) in a dual-adaptation task. We found that the visual workspace location cue enabled adaptation across conditions primarily through implicit adaptation. In contrast, we found that the color cue was largely ineffective for dual adaptation, except in a small subset of participants who appeared to use explicit strategies. Our study suggests that the previously inconclusive role of color cues in dual-adaptation may be explained by differential contribution of explicit strategies across conditions.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yi Yang ◽  
Xinhai Ye ◽  
Cong Dang ◽  
Yunshen Cao ◽  
Rui Hong ◽  
...  

Abstract Background Hymenoptera comprise extremely diverse insect species with extensive variation in their life histories. The Dryinidae, a family of solitary wasps of Hymenoptera, have evolved innovations that allow them to hunt using venom and a pair of chelae developed from the fore legs that can grasp prey. Dryinidae larvae are also parasitoids of Auchenorrhyncha, a group including common pests such as planthoppers and leafhoppers. Both of these traits make them effective and valuable for pest control, but little is yet known about the genetic basis of its dual adaptation to parasitism and predation. Results We sequenced and assembled a high-quality genome of the dryinid wasp Gonatopus flavifemur, which at 636.5 Mb is larger than most hymenopterans. The expansion of transposable elements, especially DNA transposons, is a major contributor to the genome size enlargement. Our genome-wide screens reveal a number of positively selected genes and rapidly evolving proteins involved in energy production and motor activity, which may contribute to the predatory adaptation of dryinid wasp. We further show that three female-biased, reproductive-associated yellow genes, in response to the prey feeding behavior, are significantly elevated in adult females, which may facilitate the egg production. Venom is a powerful weapon for dryinid wasp during parasitism and predation. We therefore analyze the transcriptomes of venom glands and describe specific expansions in venom Idgf-like genes and neprilysin-like genes. Furthermore, we find the LWS2-opsin gene is exclusively expressed in male G. flavifemur, which may contribute to partner searching and mating. Conclusions Our results provide new insights into the genome evolution, predatory adaptation, venom evolution, and sex-biased genes in G. flavifemur, and present genomic resources for future in-depth comparative analyses of hymenopterans that may benefit pest control.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253948
Author(s):  
Maria N. Ayala ◽  
Denise Y. P. Henriques

The ability to switch between different visuomotor maps accurately and efficiently is an invaluable feature to a flexible and adaptive human motor system. This can be examined in dual adaptation paradigms where the motor system is challenged to perform under randomly switching, opposing perturbations. Typically, dual adaptation doesn’t proceed unless each mapping is trained in association with a predictive cue. To investigate this, we first explored whether dual adaptation occurs under a variety of contextual cues including active follow-through movements, passive follow-through movements, active lead-in movements, and static visual cues. In the second experiment, we provided one group with a compensatory strategy about the perturbations (30° CW and 30° CCW rotations) and their relationships to each context (static visual cues). We found that active, but not passive, movement cues elicited dual adaptation. Expectedly, we didn’t find evidence for dual adaptation using static visual cues, but those in the Instruction group compensated by implementing aiming strategies. Then, across all experimental conditions, we explored the extent by which dual learning is supported by both implicit and explicit mechanisms, regardless of whether they elicited dual adaptation across all the various cues. To this end, following perturbed training, participants from all experiments were asked to either use or ignore the strategy as they reached without visual feedback. This Process Dissociation Procedure teased apart the implicit and explicit contributions to dual adaptation. Critically, we didn’t find evidence for implicit learning for those given instructions, suggesting that when explicit aiming strategies are implemented in dual adaptation, implicit mechanisms are likely not involved. Thus, by implementing conscious strategies, dual adaptation can be easily facilitated even in cases where learning would not occur otherwise.


2021 ◽  
Author(s):  
Marion Forano ◽  
Raphael Schween ◽  
Jordan A Taylor ◽  
Mathias Hegele ◽  
David W Franklin

Switching between motor tasks requires accurate adjustments for changes in dynamics (grasping a cup) or sensorimotor transformations (moving a computer mouse). Dual-adaptation studies have investigated how learning of context-dependent dynamics or transformations is enabled by sensory cues. However, certain cues, such as color, have shown mixed results. We propose that these mixed results may arise from two major classes of cues: "direct" cues, which are part of the dynamic state and "indirect" cues, which are not. We hypothesized that explicit strategies would primarily account for adaptation for an indirect color cue but would be limited to simple tasks while a direct visual separation cue would allow implicit adaptation regardless of task complexity. To test this idea, we investigated the relative contribution of implicit and explicit learning in relation to contextual cue type (colored or visually shifted workspace) and task complexity (one or eight targets) in a dual-adaptation task. We found that the visual workspace location cue enabled adaptation across conditions primarily through implicit adaptation. In contrast, we found that the color cue was largely ineffective for dual adaptation, except in a small subset of participants who appeared to use explicit strategies. Our study suggests that the previously inconclusive role of color cues in dual-adaptation may be explained by differential contribution of explicit strategies across conditions.


2020 ◽  
Vol 16 (10) ◽  
pp. e1008373
Author(s):  
Marion Forano ◽  
David W. Franklin

2020 ◽  
Author(s):  
Maria Nadine Ayala ◽  
Denise Henriques

The ability to switch between different tasks accurately and efficiently is an invaluable feature to a flexible and adaptive human motor system. This can be examined in dual adaptation paradigms where the motor system is challenged to perform under randomly switching, opposing perturbations. Typically, dual adaptation doesn’t proceed unless each mapping is trained in association with a predictive cue. To investigate this, we first explored whether dual adaptation occurs under a variety of contextual cues including active follow-through movements, passive follow-through movements, active three-part lead-in movements, and static visual cues. In a final intervention, we provided our Instructed group with a compensatory strategy about the perturbations (30° CW/CCW rotations) and their relationships to each context (static visual cues). This allowed us to explore the extent by which dual learning is supported by both implicit and explicit mechanisms, regardless of whether or not they elicited dual adaptation across all the various cues. To this end, following perturbed training, participants from all experiments were asked to either use or ignore the strategy as they reached without visual feedback. This Process Dissociation Procedure teased apart the implicit and explicit contributions to dual adaptation. We found that active movement cues, but not passive ones, elicited dual adaptation. Expectedly, static visual cues didn’t elicit dual adaptation, but those in the Instruction group compensated by implementing aiming strategies. Critically, we found no implicit contributions in this Instruction group, but an effect of instruction, suggesting that explicit aiming strategies inhibit implicit mechanisms in dual adaptation. Thus, by implementing conscious strategies, dual adaptation can be easily facilitated even in cases where learning would not occur otherwise.


2019 ◽  
Author(s):  
Marion Forano ◽  
David W. Franklin

AbstractThe timescales of adaptation to novel dynamics are well explained by a dual-rate model with slow and fast states. This model can predict interference, savings and spontaneous recovery, but cannot account for adaptation to multiple tasks, as each new task drives unlearning of the previously learned task. Nevertheless, in the presence of appropriate contextual cues, humans are able to adapt simultaneously to opposing dynamics. Consequently this model was expanded, suggesting that dual-adaptation occurs through a single fast process and multiple slow processes. However, such a model does not predict spontaneous recovery within dual-adaptation. Here we assess the existence of multiple fast processes by examining the presence of spontaneous recovery in two experimental variations of an adaptation-de-adaptation-error-clamp paradigm within dual-task adaptation in humans. In both experiments, evidence for spontaneous recovery towards the initially learned dynamics (A) was found in the error-clamp phase, invalidating the one-fast-two-slow dual-rate model. However, as adaptation is not only constrained to two timescales, we fit twelve multi-rate models to the experimental data. BIC model comparison again supported the existence of two fast processes, but extended the timescales to include a third rate: the ultraslow process. Even within our single day experiment, we found little evidence for decay of the learned memory over several hundred error-clamp trials. Overall, we show that dual-adaptation can be best explained by a two-fast-triple-rate model over the timescales of adaptation studied here. Longer term learning may require even slower timescales, explaining why we never forget how to ride a bicycle.Author SummaryRetaining motor skills is crucial to perform basic daily life tasks. However we still have limited understanding of the computational structure of these motor memories, an understanding that is critical for designing rehabilitation. Here we demonstrate that learning any task involves adaptation of independent fast, slow and ultraslow processes to build a motor memory. The selection of the appropriate motor memory is gated through a contextual cue. Together this work extends our understanding of the architecture of motor memories, by merging disparate computational theories to propose a new model.


Sign in / Sign up

Export Citation Format

Share Document