scholarly journals Performance Assessment of an Energy–Based Approximation Method for the Dynamic Capacity of RC Frames Subjected to Sudden Column Removal Scenarios

2021 ◽  
Vol 11 (16) ◽  
pp. 7492
Author(s):  
Luchuan Ding ◽  
Ruben Van Coile ◽  
Wouter Botte ◽  
Robby Caspeele

The alternative load path method is widely used to assess the progressive collapse performance of reinforced concrete structures. As an alternative to an accurate non–linear dynamic analysis, an energy–based method (EBM) can also be adopted to approximately calculate the dynamic load–bearing capacity curve or the dynamic resistance based on a static capacity curve. However, dynamic effects cannot be explicitly taken into account in the EBM. The model uncertainty associated with the use of the EBM for evaluating the dynamic ultimate capacity of structural frames has not yet been quantified. Knowledge of this model uncertainty is however necessary when applying EBM as part of reliability calculations, for example, in relation to structural robustness quantification. Hence, this article focuses on the evaluation of the performance of the EBM and the quantification of its model uncertainty in the context of reliability–based assessments of progressive or disproportionate collapse. The influences of damping effects and different column removal scenarios are investigated. As a result, it is found that damping effects have a limited influence on the performance of the EBM. In the case of an external column removal scenario, the performance of the EBM is lower as the response is not a single deformation mode according to the results in the frequency domain. However, a good performance is found in the case of an internal column removal scenario in which the assumption of a single deformation mode is found to be sufficiently adequate. Probabilistic models for the model uncertainties related to the use of the EBM compared to direct dynamic analyses are proposed in relation to both the resistances and the associated displacements. Overall, the EBM shows to be an adequate approximation, resulting in a small bias and small standard deviation for its associated model uncertainty.

2021 ◽  
Author(s):  
Luchuan Ding ◽  
Ruben Van Coile ◽  
Wouter Botte ◽  
Robby Caspeele

<p>The alternative load path (ALP) method is widely used to investigate the performance of reinforced concrete (RC) buildings in case of progressive collapse (or disproportional collapse) scenarios. This kind of analysis can be carried out either in a static way or in a dynamic way. In this contribution, these methods are compared by means of nonlinear static and nonlinear dynamic analysis methods. A 5-storey RC frame subjected to two different sudden column removal scenarios is adopted as a case study. The probabilistic analysis considers 12 random variables. On the basis of the stochastic results, a dynamic amplification factor (DAF) is calculated. The mean values of the DAF are 1.114 and 1.102 for the external column removal scenario (Case A) and the internal column removal scenario (Case B), respectively. Compared to the failure probabilities obtained through a static analysis, the failure probabilities for the incremental dynamic analysis results are 184.0% and 180.7% higher for Case A and Case B, respectively.</p>


Sign in / Sign up

Export Citation Format

Share Document