gain narrowing
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 7)

H-INDEX

17
(FIVE YEARS 2)

2020 ◽  
Vol 10 (5) ◽  
pp. 1836 ◽  
Author(s):  
Andreas Lubatsch ◽  
Regine Frank

We implement externally excited ZnO Mie resonators in a framework of a generalized Hubbard Hamiltonian to investigate the lifetimes of excitons and exciton-polaritons out of thermodynamical equilibrium. Our results are derived by a Floquet-Keldysh-Green’s formalism with Dynamical Mean Field Theory (DMFT) and a second order iterative perturbation theory solver (IPT). We find that the Fano resonance which originates from coupling of the continuum of electronic density of states to the semiconductor Mie resonator yields polaritons with lifetimes between 0.6 ps and 1.45 ps. These results are compared to ZnO polariton lasers and to ZnO random lasers. We interpret the peaks of the exciton-polariton lifetimes in our results as a sign of gain narrowing which may lead to stable polariton lasing modes in the single excited ZnO Mie resonator. This form of gain may lead to polariton random lasing in an ensemble of ZnO Mie resonators in the non-equilibrium.


2020 ◽  
Vol 10 (2) ◽  
pp. 669
Author(s):  
Hui Xu ◽  
Shuai Yuan ◽  
Zhengru Guo ◽  
Qingshan Zhang ◽  
Yanying Ma ◽  
...  

We demonstrated a straightforward approach to generate red and near-infrared laser emissions by a Raman-assisted four wave mixing (FWM) process in a nonlinear Yb-doped fiber amplifier, delivering 342 fs pulses of 241 nJ at 864 nm, 834 fs pulses of 21 nJ at 751 nm, and 1.9 ps pulses of 3.8 μJ at 1030 nm. A pair of gratings was employed as the pre-compressor to promote the intensity of the fundamental wave in the main amplifier. Multiple wavelengths from 751 to 1273 nm resulted due to cascaded-Raman-assisted FWM. The pre-compression also underlay the achievement of 25.1, 701, and 2000 kW peak power for the red (751 nm), near-infrared (864 nm), and fundamental (1030 nm) components respectively, which restrained the gain narrowing effect during the amplification. It finally led to shorter pulse duration under increased power.


2020 ◽  
Vol 8 ◽  
Author(s):  
Huijun He ◽  
Jun Yu ◽  
Wentao Zhu ◽  
Xiaoyang Guo ◽  
Cangtao Zhou ◽  
...  

Abstract This study develops a Yb:KGW dual-crystal based regenerative amplifier. The thermal lensing and gain-narrowing effects are compensated by the dual-crystal configuration. Sub-nanojoule pulses are amplified to 1.5 mJ with 9 nm spectral bandwidth and 1 kHz repetition rate using chirped pulse amplification technology. Consequently, 1.2 mJ pulses with a pulse duration of 227 fs are obtained after compression. Thanks to the cavity design, the output laser was a near diffraction limited beam with M2 around 1.1. The amplifier has the potential to boost energy above 2 mJ after compression and act as a front end for a future kilohertz terawatt-class diode-pumped Yb:KGW laser system.


Optica ◽  
2019 ◽  
Vol 6 (10) ◽  
pp. 1328 ◽  
Author(s):  
Pavel Sidorenko ◽  
Walter Fu ◽  
Frank Wise

2018 ◽  
Vol 9 (3) ◽  
pp. 205-214 ◽  
Author(s):  
A. S. Rudenkov ◽  
V. E. Kisel ◽  
A. S. Yasukevich ◽  
K. L. Hovhannesyan ◽  
A. G. Petrosyan ◽  
...  

Diode-pumped femtosecond chirped pulse regenerative amplifiers based on Yb3+-materials are of practical importance for wide range of scientific, industrial and biomedical applications. The aim of this work was to study the amplification of broadband chirped femtosecond pulses in regenerative amplifier based on Yb3+:CaYAlO4crystal.Such systems use femtosecond mode-locked lasers as seed pulse sources and amplify nJ-seed pulses to sub-mJ energy range. Most chirped pulse regenerative amplifier systems described in the literature use seed lasers with typical pulse spectral width at the level of 10–15 nm full width at half maximum (FWHM) that limit the seed pulse duration of about 90 fs and amplified pulse duration at the level of 200 fs due to strong influence of gain narrowing effect on the amplified pulse parameters. Yb3+-doped crystals with wide and smooth gain bandwidth as an active medium of chirped femtosecond pulse regenerative amplification systems allow to reduce negative contribution of gain narrowing effect and lead to shortening of amplified pulses. In this research we study the chirped pulse regenerative amplification of broad-band femtosecond pulses (60 nm spectral width FWHM) in the Yb3+:CaYAlO -based chirped pulse regenerative amplifier. Substantial reduction of the amplified pulse duration down to 120 fs (19.4 nm spectral width FWHM) with average power of 3 W at 200 kHz pulse repetition frequency was demonstrated without any gain narrowing compensation technique.The results of experimental investigation of broad-band seeded Yb3+:CaYAlO -based chirped pulse regenerative amplifier are reported for the first time to our knowledge. 120 fs-pulses (19.4 nm FWHM) with average output power of 3 W were demonstrated without any gain narrowing compensation technique. Despite the significant reduction of amplified pulse duration the task of improvement group velocity dispersion balance (including high orders of group velocity dispersion) remains relevant.


2017 ◽  
Author(s):  
Cristine C. Kores ◽  
Dimitri Geskus ◽  
Nur Ismail ◽  
Meindert Dijkstra ◽  
Edward H. Bernhardi ◽  
...  

2015 ◽  
Vol 23 (5) ◽  
pp. 6809 ◽  
Author(s):  
Yuhei Chiba ◽  
Hideyuki Takada ◽  
Kenji Torizuka ◽  
Kazuhiko Misawa

Sign in / Sign up

Export Citation Format

Share Document