subspace projections
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 13)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
John Fredy Morales Tellez ◽  
Jonathan Moeyersons ◽  
Dries Testelmans ◽  
Bertien Buyse ◽  
Pascal Borzée ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pablo Armañac-Julián ◽  
David Hernando ◽  
Jesús Lázaro ◽  
Candelaria de Haro ◽  
Rudys Magrans ◽  
...  

AbstractThe ideal moment to withdraw respiratory supply of patients under Mechanical Ventilation at Intensive Care Units (ICU), is not easy to be determined for clinicians. Although the Spontaneous Breathing Trial (SBT) provides a measure of the patients’ readiness, there is still around 15–20% of predictive failure rate. This work is a proof of concept focused on adding new value to the prediction of the weaning outcome. Heart Rate Variability (HRV) and Cardiopulmonary Coupling (CPC) methods are evaluated as new complementary estimates to assess weaning readiness. The CPC is related to how the mechanisms regulating respiration and cardiac pumping are working simultaneously, and it is defined from HRV in combination with respiratory information. Three different techniques are used to estimate the CPC, including Time-Frequency Coherence, Dynamic Mutual Information and Orthogonal Subspace Projections. The cohort study includes 22 patients in pressure support ventilation, ready to undergo the SBT, analysed in the 24 h previous to the SBT. Of these, 13 had a successful weaning and 9 failed the SBT or needed reintubation –being both considered as failed weaning. Results illustrate that traditional variables such as heart rate, respiratory frequency, and the parameters derived from HRV do not differ in patients with successful or failed weaning. Results revealed that HRV parameters can vary considerably depending on the time at which they are measured. This fact could be attributed to circadian rhythms, having a strong influence on HRV values. On the contrary, significant statistical differences are found in the proposed CPC parameters when comparing the values of the two groups, and throughout the whole recordings. In addition, differences are greater at night, probably because patients with failed weaning might be experiencing more respiratory episodes, e.g. apneas during the night, which is directly related to a reduced respiratory sinus arrhythmia. Therefore, results suggest that the traditional measures could be used in combination with the proposed CPC biomarkers to improve weaning readiness.


2021 ◽  
pp. 103798
Author(s):  
Jihong Zhu ◽  
David Navarro-Alarcon ◽  
Robin Passama ◽  
Andrea Cherubini

2021 ◽  
Vol 38 (1) ◽  
pp. 51-60
Author(s):  
Semih Ergin ◽  
Sahin Isik ◽  
Mehmet Bilginer Gulmezoglu

In this paper, the implementations and comparison of some classifiers along with 2D subspace projection approaches have been carried out for the face recognition problem. For this purpose, the well-known classifiers such as K-Nearest Neighbor (K-NN), Common Matrix Approach (CMA), Support Vector Machine (SVM) and Convolutional Neural Network (CNN) are conducted on low dimensional face representations that are determined from 2DPCA-, 2DSVD- and 2DFDA approaches. CMA, which is a 2D version of the Common Vector Approach (CVA), finds a common matrix for each face class. From the experimental results, we have observed that the SVM presents a dominant performance in general. When overall results of all datasets are considered, CMA is slightly superior to others in case of 2DPCA- and 2DSVD-based features matrices of the AR dataset. On the other side, CNN is better than other classifiers when it comes to develop a face recognition system based on original face samples and 2DPCA-based feature matrices of the Yale dataset. The experimental results indicate that use of these feature matrices with CMA, SVM, and CNN in classification problems is more advantageous than the use of original pixel matrices in the sense of both processing time and memory requirement.


2021 ◽  
Vol 6 (2) ◽  
pp. 061-073
Author(s):  
Gudrun Kalmbach HE

Physics counts four basic forces, the electromagnetic EMI, weak WI, strong SI interactions and gravity GR. The first three are provided with a unified theory which partly needs revision and has the symmetry U(1)xSU(2)xSU(3). In this article their space presentations are described in order to inlcude a theory for gravity which cannot be added directly to the standrd model. There are many instances of gravitational actions which are different from the other three interactions. Gravity uses geometrical models beside spactime, often projective, including stereographic and spiralic orthogonal subspace projections. Real and complex cross products, symmetries which belong to the complex Moebius transformation subgroups, complex cross ratios, Gleason frame GF measures, dihedrals nth roots of unity with symmetris are some new tools (figure 14) for a new gravity model. The basic vector space is 8-dimensional, but beside the usual vector addition and calculus there are different multiplications added. The author uses complex multiplications in the complex 4-dimensional space C4 for calculus. The SU (3) multiplication of GellMann 3x3-matrices is used for C³ and its three 4-dimensional C² projections. Projective spaces are CP² for nucleons and a GR Higgs plane P² and projective measuring GF‘s which have 3-dimensional, orthogonal base vectors like spin. The doubling of quaternionic spacetime to octonians has a different multiplication and seven GF‘s which partly occur in physics as cross product equations. Beside the real, the complex cross product extends the spacetime dimensions from 4 to 8. Consequences are that there are many 3-dimensional, many 4-dimensional, some 6-dimensional and also projective 5-dimensional spaces in which the actions of gravity can then be described. Spacetime is for this not sufficient. No symmetry can be muliplied to the standard model since the new symmetries belong to different geometries and are not directly related to a set of field quantums like one photon for EMI, three weak bosons (or four) for WI, eight gluons for SI. GR has graviton waves similar to EMI waves and in quasiparticle form rgb-graviton whirls, for mass Higgs bosons, maybe also solitons (density as mass per volume changing). They attribute to a distance metric between two points (kept fixed) an amplitude density (operator} which changes the metrical diameter of the volume, but not the mass.


2021 ◽  
Vol 103 (4) ◽  
Author(s):  
Oliver H. E. Philcox ◽  
Mikhail M. Ivanov ◽  
Matias Zaldarriaga ◽  
Marko Simonović ◽  
Marcel Schmittfull
Keyword(s):  

2020 ◽  
Author(s):  
Pablo Armañac-Julián ◽  
David Hernando ◽  
Jesús Lázaro ◽  
Candelaria de Haro ◽  
Rudys Magrans ◽  
...  

Abstract The ideal moment to withdraw respiratory supply of patients under Mechanical Ventilation (MV) at Intensive Care Units (ICU), is not easy to be determined for clinicians. Although the Spontaneous Breathing Trial (SBT) provides a measure of the patients’ readiness, there is still around 15-20% of predictive failure rate. This work explores both Heart Rate Variability (HRV) and Cardiopulmonary Coupling (CPC) estimates as complementary information for readiness prediction. The CPC is related to how the mechanisms regulating respiration and cardiac pumping are working simultaneously, and it is defined from HRV in combination with respiratory information. Three different techniques are used to measure CPC, including Orthogonal Subspace Projections, Dynamic Mutual Information and Time-Frequency Coherence. 22 patients undergoing SBT in pressure support ventilation are analysed in the 24 hours previous to the SBT. 13 had a successful weaning and 9 failed the SBT or needed reintubation –being both considered as failed weaning. Results illustrate that traditional variables such as heart rate, respiratory frequency, and the parameters derived from HRV do not differ in patients with successful or failed weaning. However, significant statistical differences are found for the novel CPC parameters, throughout the whole recordings, comparing the values of the two groups. In addition, the night prior to SBT is the moment where differences are higher, probably because patients with failed weaning might be experiencing more respiratory episodes, e.g. apneas during the night, which is directly related to a reduced RSA. Therefore, results suggest that the traditional measures could be used in combination with these novel CPC biomarkers to help clinicians better predict if patients are ready to be weaned.


Sign in / Sign up

Export Citation Format

Share Document