scholarly journals Stellar Rotation in the Gaia Era: Revised Open Clusters’ Sequences

2021 ◽  
Vol 257 (2) ◽  
pp. 46
Author(s):  
Diego Godoy-Rivera ◽  
Marc H. Pinsonneault ◽  
Luisa M. Rebull

Abstract The period versus mass diagrams (i.e., rotational sequences) of open clusters provide crucial constraints for angular momentum evolution studies. However, their memberships are often heavily contaminated by field stars, which could potentially bias the interpretations. In this paper, we use data from Gaia DR2 to reassess the memberships of seven open clusters with ground- and space-based rotational data, and present an updated view of stellar rotation as a function of mass and age. We use the Gaia astrometry to identify the cluster members in phase space, and the photometry to derive revised ages and place the stars on a consistent mass scale. Applying our membership analysis to the rotational sequences reveals that: (1) the contamination in clusters observed from the ground can reach up to ∼35%; (2) the overall fraction of rotational outliers decreases substantially when the field contaminants are removed, but some outliers persist; (3) there is a sharp upper edge in the rotation periods at young ages; (4) at young ages, stars in the 1.0–0.6M ⊙ range inhabit a global maximum of rotation periods, potentially providing an optimal window for habitable planets. Additionally, we see clear evidence for a strongly mass-dependent spin-down process. In the regime where rapid rotators are leaving the saturated domain, the rotational distributions broaden (in contradiction with popular models), which we interpret as evidence that the torque must be lower for rapid rotators than for intermediate ones. The cleaned rotational sequences from ground-based observations can be as constraining as those obtained from space.

2004 ◽  
Vol 215 ◽  
pp. 113-122 ◽  
Author(s):  
Robert D. Mathieu

Major photometric monitoring campaigns of star-forming regions in the past decade have provided rich rotation period distributions of pre-main-sequence stars. The rotation periods span more than an order of magnitude in period, with most falling between 1 and 10 days. Thus the broad rotation period distributions found in 100 Myr clusters are already established by an age of 1 Myr. The most rapidly rotating stars are within a factor of 2-3 of their critical velocities; if angular momentum is conserved as they evolve to the ZAMS, these stars may come to exceed their critical velocities. Extensive efforts have been made to find connections between stellar rotation and the presence of protostellar disks; at best only a weak correlation has been found in the largest samples. Magnetic disk-locking is a theoretically attractive mechanism for angular momentum evolution of young stars, but the links between theoretical predictions and observational evidence remain ambiguous. Detailed observational and theoretical studies of the magnetospheric environments will provide better insight into the processes of pre-main-sequence stellar angular momentum evolution.


2009 ◽  
Vol 5 (S266) ◽  
pp. 510-510
Author(s):  
M. H. Pinsonneault ◽  
D. M. Terndrup ◽  
P. Denisenkov

AbstractThe origin and evolution of stellar rotation has proven to be both important and challenging. Data obtained in star clusters has already provided key constraints on the role of protostellar disks and the timescales for angular-momentum loss and internal transport. Recent data sets also provide empirical support for the idea that a wide range of rotation rates converge on the main sequence. We evaluate the prospects for rotation–mass–age relationships and the role of open clusters in calibrating them.


2020 ◽  
Vol 636 ◽  
pp. A76 ◽  
Author(s):  
F. Spada ◽  
A. C. Lanzafame

Solar-like stars (M ≲ 1.3 M⊙) lose angular momentum through their magnetized winds. The resulting evolution of the surface rotation period, which can be directly measured photometrically, has the potential to be an accurate indicator of stellar age, and is constrained by observations of rotation periods of coeval stars, such as members of Galactic open clusters. A prominent observational feature of the mass–rotation period diagrams of open clusters is a sequence of relatively slower rotators. The formation and persistence of this slow-rotator sequence across several billion years imply an approximately coherent spin-down of the stars that belong to it. In particular, the sequence is observed to evolve coherently toward longer periods in progressively older clusters. Recent observations of the ≈700 Myr Praesepe and the 1 Gyr NGC 6811 clusters, however, are not fully consistent with this general pattern. While the stars of 1 M⊙ on the slow-rotator sequence of the older NGC 6811 have longer periods than their counterparts in the younger Praesepe, as expected, the two sequences essentially merge at lower masses (≲0.8 M⊙). In other words, it seems that low-mass stars have not been spinning down in the intervening 300 Myr. Here we show that this behavior is a manifestation of the variable rotational coupling in solar-like stars. The resurfacing of angular momentum from the interior can temporarily compensate for that lost at the surface due to wind braking. In our model the internal redistribution of angular momentum has a steep mass dependence; as a result, the re-coupling occurs at different ages for stars of different masses. The semi-empirical mass dependence of the rotational coupling timescale included in our model produces an evolution of the slow-rotator sequence in very good agreement with the observations. Our model, in particular, explains the stalled surface spin-down of low-mass stars between Praesepe and NGC 6811, and predicts that the same behavior should be observable at other ages in other mass ranges.


2008 ◽  
Vol 4 (S258) ◽  
pp. 357-362 ◽  
Author(s):  
Søren Meibom

AbstractOur ability to determine stellar ages from measurements of stellar rotation, hinges on how well we can measure the dependence of rotation on age for stars of different masses. Rotation periods for stars in open clusters are essential to determine the relations between stellar age, rotation, and mass. Until recently, ambiguities in vsini data and lack of cluster membership information, prevented a clear empirical definition of the dependence of rotation on color. Direct measurements of stellar rotation periods for members in young clusters have now revealed a well-defined period-color relation. We show new results for the open clusters M35 and M34. However, rotation periods based on ground-based observations are limited to young clusters. The Hyades represent the oldest coeval population of stars with measured rotation periods. Measurements of rotation periods for older stars are needed to properly constrain the dependence of stellar rotation on age. We present our plans to use the Kepler space telescope to measure rotation periods in clusters as old as and older than the Sun.


2020 ◽  
Vol 132 (1009) ◽  
pp. 034502 ◽  
Author(s):  
ChaoJie Hao ◽  
Ye Xu ◽  
ZhenYu Wu ◽  
ZhiHong He ◽  
ShuaiBo Bian

2020 ◽  
Vol 501 (1) ◽  
pp. 483-490
Author(s):  
Jim Fuller

ABSTRACT In close binary stars, the tidal excitation of pulsations typically dissipates energy, causing the system to evolve towards a circular orbit with aligned and synchronized stellar spins. However, for stars with self-excited pulsations, we demonstrate that tidal interaction with unstable pulsation modes can transfer energy in the opposite direction, forcing the spins of the stars away from synchronicity, and potentially pumping the eccentricity and spin–orbit misalignment angle. This ‘inverse’ tidal process only occurs when the tidally forced mode amplitude is comparable to the mode’s saturation amplitude, and it is thus most likely to occur in main-sequence gravity mode pulsators with orbital periods of a few days. We examine the long-term evolution of inverse tidal action, finding the stellar rotation rate can potentially be driven to a very large or very small value, while maintaining a large spin–orbit misalignment angle. Several recent asteroseismic analyses of pulsating stars in close binaries have revealed extremely slow core rotation periods, which we attribute to the action of inverse tides.


2018 ◽  
Vol 480 (3) ◽  
pp. 3739-3746 ◽  
Author(s):  
N Bastian ◽  
S Kamann ◽  
I Cabrera-Ziri ◽  
C Georgy ◽  
S Ekström ◽  
...  

2018 ◽  
Vol 618 ◽  
pp. A93 ◽  
Author(s):  
T. Cantat-Gaudin ◽  
C. Jordi ◽  
A. Vallenari ◽  
A. Bragaglia ◽  
L. Balaguer-Núñez ◽  
...  

Context. Open clusters are convenient probes of the structure and history of the Galactic disk. They are also fundamental to stellar evolution studies. The second Gaia data release contains precise astrometry at the submilliarcsecond level and homogeneous photometry at the mmag level, that can be used to characterise a large number of clusters over the entire sky. Aims. In this study we aim to establish a list of members and derive mean parameters, in particular distances, for as many clusters as possible, making use of Gaia data alone. Methods. We compiled a list of thousands of known or putative clusters from the literature. We then applied an unsupervised membership assignment code, UPMASK, to the Gaia DR2 data contained within the fields of those clusters. Results. We obtained a list of members and cluster parameters for 1229 clusters. As expected, the youngest clusters are seen to be tightly distributed near the Galactic plane and to trace the spiral arms of the Milky Way, while older objects are more uniformly distributed, deviate further from the plane, and tend to be located at larger Galactocentric distances. Thanks to the quality of Gaia DR2 astrometry, the fully homogeneous parameters derived in this study are the most precise to date. Furthermore, we report on the serendipitous discovery of 60 new open clusters in the fields analysed during this study.


2018 ◽  
Vol 620 ◽  
pp. A91 ◽  
Author(s):  
J. Ďurech ◽  
J. Hanuš

Context. In addition to stellar data, Gaia Data Release 2 (DR2) also contains accurate astrometry and photometry of about 14 000 asteroids covering 22 months of observations. Aims. We used Gaia asteroid photometry to reconstruct rotation periods, spin axis directions, and the coarse shapes of a subset of asteroids with enough observations. One of our aims was to test the reliability of the models with respect to the number of data points and to check the consistency of these models with independent data. Another aim was to produce new asteroid models to enlarge the sample of asteroids with known spin and shape. Methods. We used the lightcurve inversion method to scan the period and pole parameter space to create final shape models that best reproduce the observed data. To search for the sidereal rotation period, we also used a simpler model of a geometrically scattering triaxial ellipsoid. Results. By processing about 5400 asteroids with at least 10 observations in DR2, we derived models for 173 asteroids, 129 of which are new. Models of the remaining asteroids were already known from the inversion of independent data, and we used them for verification and error estimation. We also compared the formally best rotation periods based on Gaia data with those derived from dense lightcurves. Conclusions. We show that a correct rotation period can be determined even when the number of observations N is less than 20, but the rate of false solutions is high. For N > 30, the solution of the inverse problem is often successful and the parameters are likely to be correct in most cases. These results are very promising because the final Gaia catalogue should contain photometry for hundreds of thousands of asteroids, typically with several tens of data points per object, which should be sufficient for reliable spin reconstruction.


2020 ◽  
Vol 640 ◽  
pp. A66 ◽  
Author(s):  
S. Freund ◽  
J. Robrade ◽  
P. C. Schneider ◽  
J. H. M. M. Schmitt

Aims. We revisit the X-ray properties of the main sequence Hyades members and the relation between X-ray emission and stellar rotation. Methods. As an input catalog for Hyades members, we combined three recent Hyades membership lists derived from Gaia DR2 data that include the Hyades core and its tidal tails. We searched for X-ray detections of the main sequence Hyades members in the ROSAT all-sky survey, and pointings from ROSAT, the Chandra X-Ray Observatory, and XMM-Newton. Furthermore, we adopted rotation periods derived from Kepler’s K2 mission and other resources. Results. We find an X-ray detection for 281 of 1066 bona fide main sequence Hyades members and provide statistical upper limits for the undetected sources. The majority of the X-ray detected stars are located in the Hyades core because of its generally smaller distance to the Sun. F- and G-type stars have the highest detection fraction (72%), while K- and M-type dwarfs have lower detection rates (22%). The X-ray luminosities of the detected members range from ∼2 × 1027 erg s−1 for late M-type dwarfs to ∼2 × 1030 erg s−1 for active binaries. The X-ray luminosity distribution functions formally differ for the members in the core and tidal tails, which is likely caused by a larger fraction of field stars in our Hyades tails sample. Compared to previous studies, our sample is slightly fainter in X-rays due to differences in the Hyades membership list used; furthermore, we extend the X-ray luminosity distribution to fainter luminosities. The X-ray activity of F- and G-type stars is well defined at FX/Fbol ≈ 10−5. The fractional X-ray luminosity and its spread increases to later spectral types reaching the saturation limit (FX/Fbol ≈ 10−3) for members later than spectral type M3. Confirming previous results, the X-ray flux varies by less than a factor of three between epochs for the 104 Hyades members with multiple epoch data, significantly less than expected from solar-like activity cycles. Rotation periods are found for 204 Hyades members, with about half of them being detected in X-rays. The activity-rotation relation derived for the coeval Hyades members has properties very similar to those obtained by other authors investigating stars of different ages.


Sign in / Sign up

Export Citation Format

Share Document