scholarly journals Pathogenicity and Mefenoxam Sensitivity of Pythium, Globisporangium, and Fusarium Isolates From Coconut Coir and Rockwool in Marijuana (Cannabis sativa L.) Production

2021 ◽  
Vol 3 ◽  
Author(s):  
Cora S. McGehee ◽  
Rosa E. Raudales

Oomycetes and fungi were recovered from coconut coir and rockwool substrates where marijuana (Cannabis sativa L. cv. Silver and Citron) plants with root rot and wilt symptoms were grown in a commercial growing facility in Connecticut. The objectives of this study were to identify the isolates collected from these substrates, determine the pathogenicity of the isolates on hemp seedlings in vitro and in vivo, and evaluate the pathogens' sensitivity to mefenoxam. Pythium and Globisporangium isolates were identified by sequencing the mitochondrially-encoded cytochrome oxidase genes (COI and COII) and Fusarium sp. with the translation elongation factor (EF-1α) region and internal transcribed spacer region (ITS4 and ITS5) genes. Three isolates were identified as Globisporangium irregulare (formerly Pythium irregulare), 21 isolates were Pythium myriotylum, and one was Fusarium oxysporum. All the isolates tested were pathogenic to hemp plants in vitro and in vivo, with disease incidence between 6.7 and 100%. Inoculated plants were smaller by 32% or more compared with the non-inoculated control. On average, hemp plants infected with Pythium myriotylum produced the lowest biomass and relative greenness values. None of the Pythium and Globisporangium isolates were resistant to mefenoxam—all were sensitive to ≥5 μg·mL−1 mefenoxam. This is the first report of G. irregulare causing root rot on marijuana and hemp plants. The results of this study provide information about the characteristics of pathogens that can be found potentially in soilless substrates in controlled environment agriculture.

Author(s):  
X.E. Xiao ◽  
W. Wang ◽  
P.W. Crous ◽  
H.K. Wang ◽  
C. Jiao ◽  
...  

Citrus is an important and widely cultivated fruit crop in South China. Although the species of fungal diseases of leaves and fruits have been extensively studied, the causal organisms of branch diseases remain poorly known in China. Species of Botryosphaeriaceae are known as important fungal pathogens causing branch diseases on citrus in the USA and Europe. To determine the diversity of Botryosphaeriaceae species associated with citrus branch diseases in China, surveys were conducted in the major citrus-producing areas from 2017 to 2020. Diseased tissues were collected from twigs, branches and trunks with a range of symptoms including cankers, cracking, dieback and gummosis. Based on morphological characteristics and phylogenetic comparison of the DNA sequences of the internal transcribed spacer region (ITS), the translation elongation factor 1-alpha gene (tef1), the β-tubulin gene (tub2) and the DNA-directed RNA polymerase II second largest subunit (rpb2), 111 isolates from nine provinces were identified as 18 species of Botryosphaeriaceae, including Botryosphaeria dothidea, B. fabicerciana, Diplodia seriata, Dothiorella alpina, Do. plurivora, Lasiodiplodia citricola, L. iraniensis, L. microconidia, L. pseudotheobromae, L. theobromae, Neodeightonia subglobosa, Neofusicoccum parvum, and six previously undescribed species, namely Do. citrimurcotticola, L. guilinensis, L. huangyanensis, L. linhaiensis, L. ponkanicola and Sphaeropsis linhaiensis spp. nov. Botryosphaeria dothidea (28.8 %) was the most abundant species, followed by L. pseudotheobromae (23.4 %), which was the most widely distributed species on citrus, occurring in six of the nine provinces sampled. Pathogenicity tests indicated that all 18 species of Botryosphaeriaceae obtained from diseased citrus tissues in this study were pathogenic to the tested Citrus reticulata shoots in vitro, while not all species are pathogenic to the tested Cocktail grapefruit (C. paradisi × C. reticulata) shoots in vivo. In addition, Lasiodiplodia was the most aggressive genus both in vitro and in vivo. This is the first study to identify Botryosphaeriaceae species related to citrus branch diseases in China and the results provide a theoretical basis for the implementation of prevention and control measures.


Plant Disease ◽  
2020 ◽  
Vol 104 (8) ◽  
pp. 2054-2059 ◽  
Author(s):  
Angel Rebollar-Alviter ◽  
Hilda Victoria Silva-Rojas ◽  
Dionicio Fuentes-Aragón ◽  
Uriel Acosta-González ◽  
Merari Martínez-Ruiz ◽  
...  

In the 2017 strawberry season, several transplant losses reaching 50% were observed in Zamora, Michoacán Valley, Mexico, due to a new fungal disease associated with root rot, crown rot, and leaf spot. In this year the disease appeared consistently and increased in the following seasons, becoming a concern among strawberry growers. Thus, the aim of this research was to determine the etiology of the disease and to determine the in vitro effect of fungicides on mycelial growth of the pathogen. Fungal isolates were obtained from symptomatic strawberry plants of the cultivars ‘Albion’ and ‘Festival’ and were processed to obtain monoconidial isolates. Detailed morphological analysis was conducted. Concatenated phylogenetic reconstruction was conducted by amplifying and sequencing the translation elongation factor 1 α, β-tubulin partial gene, and the internal transcribed spacer region of rDNA. Pathogenicity tests involving inoculation of leaves and crowns reproduced the same symptoms as those observed in the field, fulfilling Koch’s postulates. Morphology and phylogenetic reconstruction indicated that the causal agent of the described symptoms was Neopestalotiopsis rosae, marking the first report anywhere in the world of this species infecting strawberry. N. rosae was sensitive to cyprodinil + fludioxonil, captan, iprodione, difenoconazole, and prochloraz.


Author(s):  
Shankar Lal Yadav ◽  
R.P. Ghasolia

Background: Root rot of fenugreek (Trigonella foenum-graecum L.) caused by Rhizoctonia solani is an important constraint to the crop and causes significant economic losses in Rajasthan as well as India and fungicides are the major tool to overcome the disease incidence. As per environment and health issues and demand of organically produced fenugreek green leaves and seeds, it is a major concerned to control it by eco-friendly approaches. The current study aimed to find the most effective control measure of this dreaded disease through eco-friendly approaches.Methods: The present field-laboratory investigations were conducted during 2016-17 and 2017-18, to evaluate six plant extracts in vitro and in vivo, namely neem (Azadirachta indica), Alstonia (Alstonia scholaris), garlic (Allium sativum), datura (Datura stramonium), tulsi (Ocimum tenuiflorum), aak (Calotropis gigantea) and four bio-agents (Trichoderma harzianum, T. viride, Bacillus subtilis and Pseudomonas fluorescens) in vivo through seed treatment alone and/or in combination for two consecutive years. Result: Our investigations in vitro with botanicals cleared that garlic clove extract was highly antimycotic to the pathogen (79.52%) followed by aak (62.48%) and neem extract (53.37%). Under field conditions, seed soaking with garlic clove extract (@10%) for 30 minutes was observed the most effective in reducing disease incidence (62.02%) and in increasing seed yield (65.35%) followed by aak (56.56% and 59.82%, respectively). In bio-agents, Trichoderma harzianum + Pseudomonas fluorescens (@ 3+3 g/kg seeds) was found superior in reducing disease incidence (66.81%) and in increasing seed yield (73.06%) and the next best was T. viride + P. fluorescens. The findings of this study can be utilized to manage the disease effectively and eco-friendly and also to obtain organic produce of the fenugreek.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1220
Author(s):  
Petra Andrade-Hoyos ◽  
Hilda Victoria Silva-Rojas ◽  
Omar Romero-Arenas

Avocado root rot caused by the oomycete Phytophthora cinnamomi is a severe disease that affects avocado production in Mexico and worldwide. The use of biological control agents such as Trichoderma species isolated from places where the disease is always present, represents an efficient alternative to reduce losses. Thus, the objective of this research was to evaluate the biocontrol ability of 10 endophytic Trichoderma spp. strains against P. cinnamomi tested both in vitro and in the greenhouse. The endophytic Trichoderma spp. were recovered from Persea americana and Cinnamomum verum roots, isolated and purified on potato–dextrose–agar medium. Ten strains were identified by phylogenetic reconstruction of the internal transcribed spacer region of rDNA sequences as T. asperellum (T-AS1, T-AS2, T-AS6, and T-AS7), T. harzianum (T-H3, T-H4, and T-H5), T. hamatum (T-A12), T. koningiopsis (T-K8 and T-K11), and P. cinnamomi (CPO-PCU). In vitro dual-culture assay, the percentage of inhibition of radial growth (PIRG) between Trichoderma spp. and P. cinnamomi strains was measured according to the Bell’s scale. PIRG results indicated that T-AS2 reached the highest value of 78.32%, and T-H5 reached the lowest value of 38.66%. In the greenhouse, the infection was evaluated according to the percentage of disease incidence. Plants with the lowest incidence of dead by avocado root rot were those whose seedlings were inoculated with T-AS2 and T-AS7, resulting in only 5% death by root rot caused by P. cinnamomi. The disease incidence of seedlings with wilt symptoms and death decreased more than 50% in the presence of Trichoderma spp. Relying on the results, we conclude that T. asperellum and T. harzianum contribute to the biocontrol of soil-borne pathogenic oomycete P. cinnamomi.


2021 ◽  
Vol 9 (2) ◽  
pp. 379
Author(s):  
Breanne M. Head ◽  
Christopher I. Graham ◽  
Teassa MacMartin ◽  
Yoav Keynan ◽  
Ann Karen C. Brassinga

Legionnaires’ disease incidence is on the rise, with the majority of cases attributed to the intracellular pathogen, Legionella pneumophila. Nominally a parasite of protozoa, L. pneumophila can also infect alveolar macrophages when bacteria-laden aerosols enter the lungs of immunocompromised individuals. L. pneumophila pathogenesis has been well characterized; however, little is known about the >25 different Legionella spp. that can cause disease in humans. Here, we report for the first time a study demonstrating the intracellular infection of an L. bozemanae clinical isolate using approaches previously established for L. pneumophila investigations. Specifically, we report on the modification and use of a green fluorescent protein (GFP)-expressing plasmid as a tool to monitor the L. bozemanae presence in the Acanthamoeba castellanii protozoan infection model. As comparative controls, L. pneumophila strains were also transformed with the GFP-expressing plasmid. In vitro and in vivo growth kinetics of the Legionella parental and GFP-expressing strains were conducted followed by confocal microscopy. Results suggest that the metabolic burden imposed by GFP expression did not impact cell viability, as growth kinetics were similar between the GFP-expressing Legionella spp. and their parental strains. This study demonstrates that the use of a GFP-expressing plasmid can serve as a viable approach for investigating Legionella non-pneumophila spp. in real time.


2021 ◽  
Vol 7 (3) ◽  
pp. 195
Author(s):  
Amr H. Hashem ◽  
Amer M. Abdelaziz ◽  
Ahmed A. Askar ◽  
Hossam M. Fouda ◽  
Ahmed M. A. Khalil ◽  
...  

Rhizoctonia root-rot disease causes severe economic losses in a wide range of crops, including Vicia faba worldwide. Currently, biosynthesized nanoparticles have become super-growth promoters as well as antifungal agents. In this study, biosynthesized selenium nanoparticles (Se-NPs) have been examined as growth promoters as well as antifungal agents against Rhizoctonia solani RCMB 031001 in vitro and in vivo. Se-NPs were synthesized biologically by Bacillus megaterium ATCC 55000 and characterized by using UV-Vis spectroscopy, XRD, dynamic light scattering (DLS), and transmission electron microscopy (TEM) imaging. TEM and DLS images showed that Se-NPs are mono-dispersed spheres with a mean diameter of 41.2 nm. Se-NPs improved healthy Vicia faba cv. Giza 716 seed germination, morphological, metabolic indicators, and yield. Furthermore, Se-NPs exhibited influential antifungal activity against R. solani in vitro as well as in vivo. Results revealed that minimum inhibition and minimum fungicidal concentrations of Se-NPs were 0.0625 and 1 mM, respectively. Moreover, Se-NPs were able to decrease the pre-and post-emergence of R. solani damping-off and minimize the severity of root rot disease. The most effective treatment method is found when soaking and spraying were used with each other followed by spraying and then soaking individually. Likewise, Se-NPs improve morphological and metabolic indicators and yield significantly compared with infected control. In conclusion, biosynthesized Se-NPs by B. megaterium ATCC 55000 are a promising and effective agent against R. solani damping-off and root rot diseases in Vicia faba as well as plant growth inducer.


BioControl ◽  
2021 ◽  
Author(s):  
Mudassir Iqbal ◽  
Maha Jamshaid ◽  
Muhammad Awais Zahid ◽  
Erik Andreasson ◽  
Ramesh R. Vetukuri ◽  
...  

AbstractUtilization of biocontrol agents is a sustainable approach to reduce plant diseases caused by fungal pathogens. In the present study, we tested the effect of the candidate biocontrol fungus Aureobasidium pullulans (De Bary) G. Armaud on strawberry under in vitro and in vivo conditions to control crown rot, root rot and grey mould caused by Phytophthora cactorum (Lebert and Cohn) and Botrytis cinerea Pers, respectively. A dual plate confrontation assay showed that mycelial growth of P. cactorum and B. cinerea was reduced by 33–48% when challenged by A. pullulans as compared with control treatments. Likewise, detached leaf and fruit assays showed that A. pullulans significantly reduced necrotic lesion size on leaves and disease severity on fruits caused by P. cactorum and B. cinerea. In addition, greenhouse experiments with whole plants revealed enhanced biocontrol efficacy against root rot and grey mould when treated with A. pullulans either in combination with the pathogen or pre-treated with A. pullulans followed by inoculation of the pathogens. Our results demonstrate that A. pullulans is an effective biocontrol agent to control strawberry diseases caused by fungal pathogens and can be an effective alternative to chemical-based fungicides.


Author(s):  
Liqing Jia ◽  
Xiaolu Ge ◽  
Chao Du ◽  
Linna Chen ◽  
Yanhong Zhou ◽  
...  

Abstract Background Eukaryotic protein translation elongation factor 1α2 (EEF1A2) is an oncogene that promotes the progression of breast and pancreatic cancer. In this study, we aimed to elucidate the oncogenic function of EEF1A2 in the metastasis of lung adenocarcinoma (LUAD). Methods Immunohistochemistry and western blot were used to study EEF1A2 expression levels in LUAD tissues and cells, respectively. The role of EEF1A2 in LUAD progression were investigated in vitro and in vivo. We identified potential EEF1A2-binding proteins by liquid chromatography-electrospray mass spectrometry (LC-MS)/MS. Protein–protein interactions were determined by immunofluorescence and co-immunoprecipitation (Co-IP). Results In this study, we report that EEF1A2 mediates the epithelial–mesenchymal transformation (EMT), to promote the metastasis of LUAD cells in vitro and in vivo. Moreover, EEF1A2 interacts with HSP90AB1 to increase TGFβ Receptor (TβR)-I, and TβRII expression, followed by enhanced SMAD3 and pSMAD3 expression and nuclear localisation, which promotes the EMT of LUAD cells. Overexpression of EEF1A2 in cancer tissues is associated with poor prognosis and short survival of patients with LUAD. Conclusions These findings underscore the molecular functions of EEF1A2 in LUAD metastasis and indicate that EEF1A2 represents a promising target in the treatment of aggressive LUAD.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Kamel Kamal Sabet ◽  
Magdy Mohamed Saber ◽  
Mohamed Adel-Aziz El-Naggar ◽  
Nehal Samy El-Mougy ◽  
Hatem Mohamed El-Deeb ◽  
...  

Five commercial composts were evaluated to suppress the root-rot pathogens (Fusarium solani (Mart.) App. and Wr, Pythium ultimum Trow, Rhizoctonia solani Kuhn, and Sclerotium rolfsii Sacc.) of cucumber plants under in vitro and greenhouse conditions. In vitro tests showed that all tested unautoclaved and unfiltrated composts water extracts (CWEs) had inhibitor effect against pathogenic fungi, compared to autoclaved and filtrated ones. Also, the inhibitor effects of 40 bacteria and 15 fungi isolated from composts were tested against the mycelial growth of cucumber root-rot pathogens. Twenty two bacteria and twelve fungal isolates had antagonistic effect against root-rot pathogens. The antagonistic fungal isolates were identified as 6 isolates belong to the genus Aspergillus spp., 5 isolates belong to the genus Penicillium spp. and one isolate belong to the genus Chaetomium spp. Under greenhouse conditions, the obtained results in pot experiment using artificial infested soil with cucumber root-rot pathogens showed that the compost amended soil reduced the percentage of disease incidence, pathogenic fungi population, and improved the cucumber vegetative parameters as shoot length, root length, fresh weight, and dry weight. These results suggested that composts are consequently considered as control measure against cucumber root-rot pathogens.


2007 ◽  
Vol 27 (13) ◽  
pp. 4641-4651 ◽  
Author(s):  
Junjiang Fu ◽  
Ho-Geun Yoon ◽  
Jun Qin ◽  
Jiemin Wong

ABSTRACT P-TEFb, comprised of CDK9 and a cyclin T subunit, is a global transcriptional elongation factor important for most RNA polymerase II (pol II) transcription. P-TEFb facilitates transcription elongation in part by phosphorylating Ser2 of the heptapeptide repeat of the carboxy-terminal domain (CTD) of the largest subunit of pol II. Previous studies have shown that P-TEFb is subjected to negative regulation by forming an inactive complex with 7SK small RNA and HEXIM1. In an effort to investigate the molecular mechanism by which corepressor N-CoR mediates transcription repression, we identified HEXIM1 as an N-CoR-interacting protein. This finding led us to test whether the P-TEFb complex is regulated by acetylation. We demonstrate that CDK9 is an acetylated protein in cells and can be acetylated by p300 in vitro. Through both in vitro and in vivo assays, we identified lysine 44 of CDK9 as a major acetylation site. We present evidence that CDK9 is regulated by N-CoR and its associated HDAC3 and that acetylation of CDK9 affects its ability to phosphorylate the CTD of pol II. These results suggest that acetylation of CDK9 is an important posttranslational modification that is involved in regulating P-TEFb transcriptional elongation function.


Sign in / Sign up

Export Citation Format

Share Document