logical network
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 12)

H-INDEX

8
(FIVE YEARS 2)

Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 565
Author(s):  
Yuanbin Fu ◽  
Jiayi Ma ◽  
Xiaojie Guo

Image-to-image translation is used to convert an image of a certain style to another of the target style with the original content preserved. A desired translator should be capable of generating diverse results in a controllable many-to-many fashion. To this end, we design a novel deep translator, namely exemplar-domain aware image-to-image translator (EDIT for short). From a logical perspective, the translator needs to perform two main functions, i.e., feature extraction and style transfer. With consideration of logical network partition, the generator of our EDIT comprises of a part of blocks configured by shared parameters, and the rest by varied parameters exported by an exemplar-domain aware parameter network, for explicitly imitating the functionalities of extraction and mapping. The principle behind this is that, for images from multiple domains, the content features can be obtained by an extractor, while (re-)stylization is achieved by mapping the extracted features specifically to different purposes (domains and exemplars). In addition, a discriminator is equipped during the training phase to guarantee the output satisfying the distribution of the target domain. Our EDIT can flexibly and effectively work on multiple domains and arbitrary exemplars in a unified neat model. We conduct experiments to show the efficacy of our design, and reveal its advances over other state-of-the-art methods both quantitatively and qualitatively.


Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1410
Author(s):  
Murad B. Khorsheed ◽  
Qasim M. Zainel ◽  
Oday A. Hassen ◽  
Saad M. Darwish

This paper applies the entropy-based fractal indexing scheme that enables the grid environment for fast indexing and querying. It addresses the issue of fault tolerance and load balancing-based fractal management to make computational grids more effective and reliable. A fractal dimension of a cloud of points gives an estimate of the intrinsic dimensionality of the data in that space. The main drawback of this technique is the long computing time. The main contribution of the suggested work is to investigate the effect of fractal transform by adding R-tree index structure-based entropy to existing grid computing models to obtain a balanced infrastructure with minimal fault. In this regard, the presented work is going to extend the commonly scheduling algorithms that are built based on the physical grid structure to a reduced logical network. The objective of this logical network is to reduce the searching in the grid paths according to arrival time rate and path’s bandwidth with respect to load balance and fault tolerance, respectively. Furthermore, an optimization searching technique is utilized to enhance the grid performance by investigating the optimum number of nodes extracted from the logical grid. The experimental results indicated that the proposed model has better execution time, throughput, makespan, latency, load balancing, and success rate.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Amr Adel

Abstract Fog computing architecture is referred to the architecture that is distributed over the geographical area. This architectural arrangement mainly focuses on physical and logical network elements, and software for the purpose of implementing proper network. Fog computing architecture allows the users to have a flexible communication and also ensures that the storage services are maintained efficiently for the purpose of managing the data. However, it has been observed that in the field of education fog computing architecture has gained huge importance due to its real time application feature. The main objective of the survey is to develop a systematic literature review for the technology of fog computing in the education IoT system. The survey will also focus on evaluating the essential factors that has a crucial role in the fields of education as well as investigating the limitation and findings associated with the fog computing technologies in educational systems from the perspective of privacy, security, and agility.


Author(s):  
Ю.М. Главчева ◽  
О.В. Каніщева ◽  
М.А. Вовк

This paper presents the method of semantic relations identification by solving the anaphora, specifically to determine the nature of relations between sentences in scientific texts. Authors explored the use of the pronoun "anaphora", developed a mathematical predicate model to determine the anaphora and antecedent and described the relationships between them for fragments in the Ukrainian language. Authors conducted an experiment based on the developed model and the logical network that was build based on presented predicate model.


Author(s):  
Qingfeng Zhao ◽  
Yulin Zhang

In this paper, we propose a novel ensemble gene selection method to obtain a gene subset. Then we provide a reverse construction method of gene network derived from expression profile data of the gene subset. The uncertainty coefficient based on information entropy are used to define the existence of logical relations among these genes. If the uncertainty coefficient between some genes exceeds predefined thresholds, the gene nodes will be connected by directed edges. Thus, a gene network is generated, which we define as gene logical network. This method is applied to the breast cancer data including control group and experimental group, with comparisons of the 2nd-order logic type distribution, average degree as well as average path length of the networks. It is found that these structures with different networks are quite distinct. By the comparison of the degree difference between control group and experimental group, the key genes are picked up. By defining the dynamics evolution rules of state transition based on the logical regulation among the key genes in the network, the dynamic behaviors for normal breast cells and cells with cancer of different stages are simulated numerically. Some of them are highly related to the development of breast cancer through literature inquiry. The study may provide a useful revelation to the biological mechanism in the formation and development of cancer.


2019 ◽  
Vol 8 (3) ◽  
pp. 126 ◽  
Author(s):  
Liu Liu ◽  
Sisi Zlatanova ◽  
Bofeng Li ◽  
Peter van Oosterom ◽  
Hua Liu ◽  
...  

An indoor logical network qualitatively represents abstract relationships between indoor spaces, and it can be used for path computation. In this paper, we concentrate on the logical network that does not have notions for metrics. Instead, it relies on the semantics and properties of indoor spaces. A navigation path can be computed by deriving parameters from these semantics and minimizing them in routing algorithms. Although previous studies have adopted semantic approaches to build logical networks, routing methods are seldom elaborated. The main issue with such networks is to derive criteria for path computation using the semantics of spaces. Here, we present a routing mechanism that is based on a dedicated space classification and a set of routing criteria. The space classification reflects characteristics of spaces that are important for navigation, such as horizontal and vertical directions, doors and windows, etc. Six routing criteria are introduced, and they involve: (1) the spaces with the preferred semantics; and/or (2) their centrality in the logical network. Each criterion is encoded as the weights to the nodes or edges of the logical network by considering the semantics of spaces. Logical paths are derived by a traditional shortest-path algorithm that minimizes these weights. Depending on the building’s interior configuration, one criterion may result in several logical paths. Therefore, we introduce a priority ordering of criteria to support path selection and decrease the possible number of logical paths. We provide a proof-of-concept implementation for several buildings to demonstrate the usability of such a routing. The main benefit of this routing method is that it does not need geometric information to compute a path. The logical network can be created using verbal descriptions only, and this routing method can be applied to indoor spaces derived from any building subdivision.


Sign in / Sign up

Export Citation Format

Share Document