physical region
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 14)

H-INDEX

15
(FIVE YEARS 1)

Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Zhaoyuan Pan ◽  
Bin Tan ◽  
Guiyuan Cao ◽  
Rongqi Zheng ◽  
Meng Liu ◽  
...  

AbstractLow-temperature germinability (LTG) is an important agronomic trait that can affect the planting time, planting area, and grain yield of staple crops, such as rice. However, the genetic mechanism of LTG is still unclear. In this study, a multi-parental permanent population with 208 single segment substitution lines (SSSLs) was used to conduct a genetic dissection for LTG across four cropping seasons. LTG was a typical quantitative trait with a high combined broad-sense heritability of 0.71. By comparison with the recipient parent, Huajingxian74, 24 SSSLs were identified as carrying LTG QTLs, which were further merged into integrated QTLs with shorter genetic distances by substitution mapping. Finally, 14 LTG QTLs were mapped on ten chromosomes, including seven positive-effect and seven negative-effect QTLs, with additive effect contributions ranging from 19.2 to 39.9%. qLTG3a, a main-effect and novel QTL, was confirmed by bulk segregant analysis using an F2 segregating population, and five key recombinants were selected to develop F3 populations for progeny testing. Marker-trait association analysis fine mapped qLTG3a to a 332.7-kb physical region between markers M6026 and M6341. Within this interval, 40 annotated genes were revealed, and three genes (Os03g0213300, Os03g0214400, and Os03g0214600) were considered as pivotal candidate genes for qLTG3a based on their sequence variations and expression patterns. Besides low temperature, qLTG3a can also enhance seed germination under standard temperature and osmotic stress. In summary, this study identified some genetic factors regulating LTG and opened a new window for breeding elite direct-seeded rice varieties. It will help reduce the climate risk in the production process of rice, which is of great significance to ensuring food security.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1564
Author(s):  
David Pérez-Gallego ◽  
Julian Gonzalez-Ayala ◽  
Antonio Calvo Hernández ◽  
Alejandro Medina

A model for a pumped thermal energy storage system is presented. It is based on a Brayton cycle working successively as a heat pump and a heat engine. All the main irreversibility sources expected in real plants are considered: external losses arising from the heat transfer between the working fluid and the thermal reservoirs, internal losses coming from pressure decays, and losses in the turbomachinery. Temperatures considered for the numerical analysis are adequate for solid thermal reservoirs, such as a packed bed. Special emphasis is paid to the combination of parameters and variables that lead to physically acceptable configurations. Maximum values of efficiencies, including round-trip efficiency, are obtained and analyzed, and optimal design intervals are provided. Round-trip efficiencies of around 0.4, or even larger, are predicted. The analysis indicates that the physical region, where the coupled system can operate, strongly depends on the irreversibility parameters. In this way, maximum values of power output, efficiency, round-trip efficiency, and pumped heat might lay outside the physical region. In that case, the upper values are considered. The sensitivity analysis of these maxima shows that changes in the expander/turbine and the efficiencies of the compressors affect the most with respect to a selected design point. In the case of the expander, these drops are mostly due to a decrease in the area of the physical operation region.


2021 ◽  
Author(s):  
Guangsi Ji ◽  
Zhibin Xu ◽  
Xiaoli Fan ◽  
Qiang Zhou ◽  
Qin Yu ◽  
...  

Abstract Spike length (SL) is the key determinant of plant architecture and yield potential. In this study, 193 recombinant inbred lines (RILs) derived from a cross between 13F10 and Chuanmai 42 (CM42) were evaluated for spike length in six environments. Sixty RILs consisting of 30 high and 30 low SLs were genotyped using the bulked segregant analysis exome sequencing (BSE-Seq) analysis for preliminary quantitative trait locus (QTL) mapping. A 6.69 Mb (518.43-525.12 Mb) region on chromosome 5AL was found to have a significant effect on the SL trait. Fifteen kompetitive allele specific PCR (KASP) markers were successfully converted from the single nucleotide polymorphisms (SNPs) in the SL target region. Combined with four novel simple sequence repeat (SSR) markers, a genetic linkage map spanning 21.159 cM was constructed. The mapping result confirmed the identity of a major and stable QTL named QSl.cib-5A in the targeted region that explained 7.88–26.60% of the phenotypic variation in SL. QSl.cib-5A was narrowed to a region of 4.84 cM interval corresponding to a 4.67 Mb (516.60-521.27 Mb) physical region in the Chinese Spring RefSeq v2.0 containing 17 high-confidence genes with 25 transcripts. In addition, this QTL exhibited pleiotropic effects on spikelet density (SD), with the phenotypic variances proportion ranging from 11.34–19.92%. This study provides a foundational step for cloning the QSl.cib-5A, which is involved in the regulation of spike morphology in common wheat.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jiaxin Xing ◽  
Dunyu Zhang ◽  
Fuyou Yin ◽  
Qiaofang Zhong ◽  
Bo Wang ◽  
...  

Bacterial blight (BB) disease caused by Xanthomonas oryzae pv. oryzae (Xoo) is a common, widespread, and highly devastating disease that affects rice yield. Breeding resistant cultivars is considered the most effective measure for controlling this disease. The introgression line G252 derived from Yuanjiang common wild rice (Oryza rufipogon) was highly resistant to all tested Xoo strains, including C5, C9, PXO99, PB, T7147Y8, Hzhj19, YM1, YM187, YJdp-2, and YJws-2. To identify the BB resistance gene(s) of G252, we developed an F2 population from the cross between G252 and 02428. A linkage analysis was carried out between the phenotype and genotype in the population. A segregation ratio of 3:1 was observed between the resistant and susceptible individuals in F2 progeny, indicating a dominant resistance gene, Xa47(t), in G252. The resistance gene was mapped within an approximately 26.24 kb physical region on chromosome 11 between two InDel markers, R13I14 and 13rbq-71; and moreover, one InDel marker, Hxjy-1, co-segregated with Xa47(t). Three genes were predicted within the target region, including a promising candidate gene encoding a nucleotide-binding domain and leucine-rich repeat (NLR) protein (LOC_Os11g46200) by combining the structure and expression analysis. Physical mapping data suggested that Xa47(t) was a new broad-spectrum BB resistance gene.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
S. Abreu ◽  
F. Febres Cordero ◽  
H. Ita ◽  
B. Page ◽  
V. Sotnikov

Abstract We present the complete set of leading-color two-loop contributions required to obtain next-to-next-to-leading-order (NNLO) QCD corrections to three-jet production at hadron colliders. We obtain analytic expressions for a generating set of finite remainders, valid in the physical region for three-jet production. The analytic continuation of the known Euclidean-region results is determined from a small set of numerical evaluations of the amplitudes. We obtain analytic expressions that are suitable for phenomenological applications and we present a C++ library for their efficient and stable numerical evaluation.


2021 ◽  
Vol 2 (1) ◽  
pp. 395-407
Author(s):  
Malcolm H. Levitt ◽  
Christian Bengs

Abstract. The quantum state of a spin ensemble is described by a density operator, which corresponds to a point in the Liouville space of orthogonal spin operators. Valid density operators are confined to a particular region of Liouville space, which we call the physical region and which is bounded by multidimensional figures called simplexes. Each vertex of a simplex corresponds to a pure-state density operator. We provide examples for spins I=1/2, I=1, I=3/2 and for coupled pairs of spins-1/2. We use the von Neumann entropy as a criterion for hyperpolarization. It is shown that the inhomogeneous master equation for spin dynamics leads to non-physical results in some cases, a problem that may be avoided by using the Lindbladian master equation.


2021 ◽  
Author(s):  
Malcolm H. Levitt ◽  
Christian Bengs

Abstract. The quantum state of a spin ensemble is described by a density operator, which corresponds to a point in the Liouville space of orthogonal spin operators. Valid density operators are confined to a particular region of Liouville space, which we call the physical region, and which is bounded by multidimensional figures called simplexes. Each vertex of a simplex corresponds to a pure-state density operator. We provide examples for spins I = 1 / 2, I = 1, I = 3 / 2, and for coupled pairs of spins-1/2. We use the von Neumann entropy as a criterion for hyperpolarization. It is shown that the inhomogeneous master equation for spin dynamics leads to non-physical results in some cases, a problem that may be avoided by using the Lindbladian master equation.


2021 ◽  
Author(s):  
Minghu Zhang ◽  
Xin Liu ◽  
Ting Peng ◽  
Dinghao Wang ◽  
Dongyu Liang ◽  
...  

Abstract Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most damaging diseases of wheat globally and resistance is the effectively control strategy. Triticum boeoticum Boiss (T. monococcum L. ssp. aegilopoides, 2n = 2x = 14, AbAb) accession G52 confers a high level of adult-plant resistance against a mixture of the Chinese prevalent Pst races. To transfer the resistance to common wheat, a cross was made between G52 and susceptible common wheat genotype Crocus. A highly resistant wheat-T. boeoticum introgression line Z15-1370 (F5 generation) with 42 chromosomes was selected cytologically and by testing with Pst races. In order to map the resistance gene(s), F1, F2, and F2:3 generations of the cross between Z15-1370 and stripe rust susceptible common wheat Mingxian169 were developed. Genetic analysis revealed that the resistance in Z15-1370 was controlled by a single recessive gene, temporarily designated YrZ15-1370. Using the bulked segregant RNA-Seq (BSR-Seq) analysis, YrZ15-1370 was mapped to chromosome 6AL and flanked by markers KASP1370-3 and KASP-1370-5 within a 4.3 cM genetic interval corresponding to 1.8 Mb physical region in the Chinese Spring genome, in which a number of disease resistance-related genes were annotated. YrZ15-1370 differed from previously Yr genes identified on chromosome 6A based on its position and/or origin. The YrZ15-1370 would be a valuable resource for wheat resistance improvement and the flanking markers developed here should be useful tools for marker-assisted selection (MAS) in breeding and further cloning the gene.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Marco Bonetti ◽  
Erik Panzer ◽  
Vladimir A. Smirnov ◽  
Lorenzo Tancredi

Abstract We compute the two-loop mixed QCD-Electroweak (QCD-EW) corrections to the production of a Higgs boson and a gluon in gluon fusion through a loop of light quarks. The relevant four-point functions with internal massive propagators are expressed as multiple polylogarithms with algebraic arguments. We perform the calculation by integration over Feynman parameters and, independently, by the method of differential equations. We compute the two independent helicity amplitudes for the process and we find that they are both finite. Moreover, we observe a weight drop when all gluons have the same helicity. We also provide a simplified expression for the all-plus helicity amplitude, which is optimised for fast and reliable numerical evaluation in the physical region.


Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1611
Author(s):  
Chao-Wei Shen ◽  
Hao-Jie Jing ◽  
Feng-Kun Guo ◽  
Jia-Jun Wu

We analyze possible singularities in the J/ψΛ invariant mass distribution of the Ξb−→K−J/ψΛ process via triangle loop diagrams. Triangle singularities in the physical region are found in 18 different triangle loop diagrams. Among those with Ξ*-charmonium-Λ intermediate states, the one from the χc1Ξ(2120)Λ loop, which is located around 4628 MeV, is found the most likely to cause observable effects. One needs S- and P-waves in χc1Λ and J/ψΛ systems, respectively, when the quantum numbers of these systems are 1/2+ or 3/2+. When the quantum numbers of the Ξ(2120) are JP=1/2+, 1/2− or 3/2+, the peak structure should be sharper than the other JP choices. This suggests that although the whole strength is unknown, we should pay attention to the contributions from the Ξ*-charmonium-Λ triangle diagram if structures are observed in the J/ψΛ invariant mass spectrum experimentally. In addition, a few triangle diagrams with the Ds1*(2700) as one of the intermediate particles can also produce singularities in the J/ψΛ distribution, but at higher energies above 4.9 GeV.


Sign in / Sign up

Export Citation Format

Share Document