control sediment
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 9)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 8 ◽  
Author(s):  
Jin-Sook Mok ◽  
Ayeon Choi ◽  
Bomina Kim ◽  
Sung-Uk An ◽  
Won-Chan Lee ◽  
...  

The expansion of the aquaculture industry has resulted in accumulation of phosphorus (P)-rich organic matter via uneaten fish feed. To elucidate the impact of fish farming on P dynamics, P speciation, and benthic P release along with partitioning of organic carbon (Corg) mineralization coupled to sulfate reduction (SR) and iron reduction (FeR) were investigated in the sediments from Jinju Bay, off the southern coast of South Korea, in July 2013. SR in the farm sediment was 6.9-fold higher than the control sediment, and depth-integrated (0–10 cm) concentrations of NH4+, PO43–, and H2S in pore water of the farm sediment were 2.2-, 3.3-, and 7.4-fold higher than that in control sediment, respectively. High biogenic-P that comprised 28% of total P directly reflected the impact of P-rich fish feed, which ultimately enhanced the bioavailability (58% of total P) of P in the surface sediment of the farm site. In the farm sediment where SR dominated Corg mineralization, H2S oxidation coupled to the reduction of FeOOH stimulated release of P bound to iron oxide, which resulted in high regeneration efficiency (85%) of P in farm sediments. Enhanced P desorption from FeOOH was responsible for the increase in authigenic-P and benthic P flux. Authigenic-P comprised 33% of total P, and benthic P flux to the overlying water column accounted for approximately 800% of the P required for primary production. Consequently, excessive benthic P release resulting directly from oversupply of P-rich fish feed was a significant internal source of P for the water column, and may induce undesirable eutrophication and harmful algal blooms in shallow coastal ecosystems.


CATENA ◽  
2021 ◽  
Vol 198 ◽  
pp. 105015
Author(s):  
M. Llena ◽  
R.J. Batalla ◽  
MW. Smith ◽  
D. Vericat

2020 ◽  
Vol 656 ◽  
pp. 123-138
Author(s):  
H Suzuki ◽  
Y Kubo ◽  
E Inomata ◽  
Y Agatsuma ◽  
MN Aoki

The subtidal zone on cold temperate rocky coasts is an environment exposed to much less physical disturbance than the intertidal, and sediment deposition is continuous. Removal of this sediment by gastropod grazers is therefore presumed to affect the structure of subtidal algal communities. This concept was investigated by evaluating the grazing effects of the dominant herbivorous gastropod Omphalius rusticus by exclusion experiments in the field. Settlement plates of both exclusion and control treatments were placed every month from November 2014, and immersed for 1 mo. Algae colonized from May and tended to increase in biomass toward summer. No marked differences were observed in the algal composition of exclusion and control. Sediment deposition showed no apparent seasonal changes. Cumulative successional plates of both exclusion and control treatments were placed in November 2014, and immersed for 1 to 9 mo. The colonization of algae started in February and the species number peaked earlier in the exclusion and later in the control. Sediment load and algal biomass were high from February to May in the exclusion, and from April to July in the control. Seedlings of Sargassum confusum were found in both plots starting in July. We conclude that O. rusticus constantly removed sediments by its grazing activity and had a large impact on the formation of the macroalgal community by controlling sediment deposition. Its presence delayed the colonization of early-successional turf algal species, but did not affect colonization of late-successional canopy-forming algae such as S. confusum.


CATENA ◽  
2020 ◽  
Vol 195 ◽  
pp. 104897
Author(s):  
Ward Swinnen ◽  
Nils Broothaerts ◽  
Renske Hoevers ◽  
Gert Verstraeten

2020 ◽  
Vol 54 (4) ◽  
pp. 521-527
Author(s):  
Y. Zhang ◽  
Y. Liu ◽  
F. Luo ◽  
Z. Liu ◽  
Y. Zou ◽  
...  

Diversity ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 118 ◽  
Author(s):  
Julia Howland ◽  
Alexa Alexander ◽  
Danielle Milani ◽  
Kerry Peru ◽  
Joseph Culp

Tailings ponds in northeastern Alberta, Canada contain massive amounts of oil sands process water (OSPW) that cannot currently be released due to the toxicity of some components. Limited space and the need for reclamation of oil sands operation sites will necessitate the release of OSPW in the near future. Knowledge of the composition and toxicity of OSPW is lacking yet is crucial for both risk assessment and management planning. This study examines chronic toxicity of a mixture of OSPW components sodium naphthenate and naphthenic acid (NA) to nymphs of the mayfly Hexagenia spp. in control and polycyclic aromatic hydrocarbons (PAH)-spiked sediment treatments. The objective of this study was to determine whether the addition of the PAH-spiked sediment significantly contributed to or masked responses of these sensitive mayflies to mixtures of NA. Mean survival in nymphs exposed to NA and PAH-spiked sediment treatments was reduced by 48% compared to those exposed to the NA mixture alone. Lethal responses were observed in all of the PAH-spiked sediment treatments. However, within PAH-spiked and control sediment treatments, there was no significant difference in nymph survival due to NA concentration, indicating that changes in survivorship were predominantly a reflection of increased mortality associated with sediment PAHs and not to the NA mixture treatment. Sublethal effects on body segment ratios suggest that mayflies exposed to NA and PAH-spiked sediment, as well as those exposed to the highest NA concentration tested (1 mg/L) and control sediment, made developmental trade-offs in order to emerge faster and escape a stressful environment. These results reveal that the release of OSPW to the surrounding environment could cause a reduction in mayfly populations. Mayflies provide ecosystem services and are an important food source for higher trophic levels in both the aquatic and terrestrial communities.


2018 ◽  
Vol 54 (12) ◽  
pp. 9978-9995 ◽  
Author(s):  
L. Wang ◽  
N. F. Fang ◽  
Z. J. Yue ◽  
Z. H. Shi ◽  
L. Hua

Sign in / Sign up

Export Citation Format

Share Document