national atmospheric deposition program
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 3)

H-INDEX

10
(FIVE YEARS 2)

Geosciences ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 331 ◽  
Author(s):  
Garth R. Groshans ◽  
Elena A. Mikhailova ◽  
Christopher J. Post ◽  
Mark A. Schlautman ◽  
Michael P. Cope ◽  
...  

Ecosystem services (ES) often rely on biogeochemical cycles, but values associated with abiotic services are often ignored or underestimated. Ecosystem services from atmospheric magnesium (Mg2+) deposition are abiotic flows (wet, dry, and total), which can be considered a source of naturally-occurring fertilizer and liming material, have not been included in economic valuations of ecosystem services. Market-based valuation of these atmospheric ecosystem service flows can partially address this negative externality. This study assessed the value of wet, dry, and total atmospheric magnesium deposition flows in the contiguous United States (USA) within boundary-based administrative accounts (e.g., state, region) based on data from the National Atmospheric Deposition Program (NRSP-3), and the market price of human-derived material (agricultural dolomite, CaMg(CO3)2). The total supporting ecosystem value of atmospheric magnesium deposition flows was $46.7M (i.e., 46.7 million U.S. dollars) ($18.5M wet + $28.2M dry) based on an average 2014 price of $12.90 per U.S. ton of agricultural dolomite (CaMg(CO3)2). The atmosphere is a common-pool resource that plays an important role in the pedosphere, providing important abiotic ES, but its monetary value is often not identified in the market due to a lack of information and/or knowledge of the proper valuation method. This study demonstrates one approach to translate atmospheric magnesium deposition flows entering the soil as an abiotic ES and potential monetary values at various scales. Omission of abiotic services in ES analysis can lead to an incomplete economic valuation.


Resources ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 66 ◽  
Author(s):  
Elena Mikhailova ◽  
Christopher Post ◽  
Mark Schlautman ◽  
Garth Groshans ◽  
Michael Cope ◽  
...  

Atmospheric resources are very important for assessing ecosystem services at different administrative levels (e.g., state, region, etc.). Quantification of atmospheric calcium (Ca2+) deposition on the total basis provides incomplete information about the ecosystem services flows (both “natural” and “human-derived”), therefore lacking a systems approach to guide sustainable management of the flows which support many ecosystem services. This study assessed the value of wet, dry, and total atmospheric calcium deposition flows in the contiguous United States (U.S.) by different spatial aggregation levels (e.g., state, region) using information from the National Atmospheric Deposition Program (NRSP-3) and commodity prices of human-derived materials: agricultural limestone (CaCO3) and uncalcined gypsum (CaSO4•2H2O). The total provisioning ecosystem value of atmospheric calcium deposition flows was $66.7M (i.e., 66.7 million U.S. dollars) ($30M wet + $36.7M dry) based on an average 2014 price of $10.42 per U.S. ton of agricultural limestone (CaCO3) or nearly $364M ($164M wet + $200M dry) based on an average 2014 price of $33.00 per U.S. ton gypsum (CaSO4•2H2O). The quantified spatial distribution of wet, dry, and total atmospheric calcium deposition could be used to identify areas with opportunities for more efficient use of “human-derived” materials since they are already being supplied by atmospheric deposition.


Sign in / Sign up

Export Citation Format

Share Document