registration errors
Recently Published Documents


TOTAL DOCUMENTS

152
(FIVE YEARS 50)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zongmiao Wan ◽  
Wenjin Wang ◽  
Chao Li ◽  
Junjie Li ◽  
Jinpeng Lin ◽  
...  

AbstractTo validate the accuracy of Cone beam computed tomography (CBCT) cervical spine modeling with three dimensional (3D)-3D registration for in vivo measurements of cervical spine kinematics. CBCT model accuracy was validated by superimposition with computed tomography (CT) models in 10 healthy young adults, and then cervical vertebrae were registered in six end positions of functional movements, versus a neutral position, in 5 healthy young adults. Registration errors and six degrees of freedom (6-DOF) kinematics were calculated and reported. Relative to CT models, mean deviations of the CBCT models were < 0.6 mm. Mean registration errors between end positions and the reference neutral position were < 0.7 mm. During flexion–extension (F–E), the translation in the three directions was small, mostly < 1 mm, with coupled LB and AR both < 1°. During lateral bending (LB), the bending was distributed roughly evenly, with coupled axial rotation (AR) opposite to the LB at C1–C2, and minimal coupled F–E. During AR, most of the rotation occurred in the C1–C2 segment (29.93 ± 7.19° in left twist and 31.38 ± 8.49° in right twist) and coupled LB was observed in the direction opposite to that of the AR. Model matching demonstrated submillimeter accuracy in cervical spine kinematics data. The presently evaluated low-radiation-dose CBCT technique can be used to measure 3D spine kinematics in vivo across functional F–E, AR, and LB positions, which has been especially challenging for the upper cervical spine.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michael J. Wester ◽  
David J. Schodt ◽  
Hanieh Mazloom-Farsibaf ◽  
Mohamadreza Fazel ◽  
Sandeep Pallikkuth ◽  
...  

AbstractWe describe a robust, fiducial-free method of drift correction for use in single molecule localization-based super-resolution methods. The method combines periodic 3D registration of the sample using brightfield images with a fast post-processing algorithm that corrects residual registration errors and drift between registration events. The method is robust to low numbers of collected localizations, requires no specialized hardware, and provides stability and drift correction for an indefinite time period.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi229-vi229
Author(s):  
Kirsten van Baarsen ◽  
Peter Woerdeman ◽  
Mariam Slot ◽  
Eelco Hoving

Abstract BACKGROUND With the incorporation of the robotic alignment module Cirq (Brainlab, Germany) into our neurosurgical armamentarium, we aimed to know our baseline accuracy in stererotactic biopsies. We therefore retrospectively reviewed our data on biopsy accuracy for brain(stem) tumors using the non-robotic alignment instrument Varioguide (Brainlab, Germany). Because of unexpectedly large deviations from the intended target, we sought to improve our registration accuracy when we introduced Cirq. Intraoperative 3D CT with bone fiducials was added to the pre-operative 3D T1 MRI with skin fiducials. This made it possible to compare surgical devices as well as registration methods. AIMS To share our experience with the new robotic alignment module Cirq for navigated brain(stem) tumor biopsies and to evaluate its target accuracy with bone fiducial registration, as compared to the previously used Varioguide with skin fiducial registration. METHODS All patients (0–18 years old) that underwent a brain(stem) biopsy in our institution were included. Over 2018–2020, data were collected retrospectively (cohort Varioguide with 3D T1 MRI registration with skin fiducials). From 2021, data were collected prospectively (cohort Cirq with both 3D T1 MRI registration with skin fiducials and intraoperative CT registration with bone fiducials). For both cohorts, Euclidian distances were calculated between the intended target and the obtained target. For the prospective cohort, registration errors were calculated for bone versus skin fiducials. PRELIMINARY REUSLTS The deviation from the intended target was much smaller in the Cirq cohort versus the Varioguide cohort. Within the Cirq cohort, registration errors were submillimetric for bone fiducial registration as compared to several millimeters for skin fiducial registration. CONCLUSION: The Cirq robotic arm is convenient, safe and highly accurate, especially when combined with intraoperative 3D CT bone fiducial registration. Skin fiducial registration does not offer the level of precision that is mandatory in brainstem tumor biopsies.


Author(s):  
M Abbass ◽  
G Gilmore ◽  
A Taha ◽  
R Chevalier ◽  
M Jach ◽  
...  

Background: Establishing spatial correspondence between subject and template images is necessary in neuroimaging research and clinical applications. A point-based set of anatomical fiducials (AFIDs) was recently developed and validated to provide quantitative measures of image registration. We applied the AFIDs protocol to magnetic resonance images (MRIs) obtained from patients with Parkinson’s Disease (PD). Methods: Two expert and three novice raters placed AFIDs on MRIs of 39 PD patients. Localization and registration errors were calculated. To investigate for unique morphometric features, pairwise distances between AFIDs were calculated and compared to 30 controls who previously had AFIDs placed. Wilcoxon rank-sum tests with Bonferroni corrections were used. Results: 6240 AFIDs were placed with a mean localization error (±SD) of 1.57mm±1.16mm and mean registration error of 3.34mm±1.94mm. Out of the 496 pairwise distances, 40 were statistically significant (p<0.05/496). PD patients had a decreased pairwise distance between the left temporal horn, brainstem and pineal gland. Conclusions: AFIDs can be successfully applied with millimetric accuracy in a clinical setting and utilized to provide localized and quantitative measures of registration error. AFIDs provide clinicians and researchers with a common, open framework for quality control and validation of spatial correspondence, facilitating accurate aggregation of imaging datasets and comparisons between various neurological conditions.


Author(s):  
Shuai Yang ◽  
Wenjing Shi ◽  
Yongzhen Ke ◽  
Yongjiang Xue

Dental computed tomography (CT) images and optical surface scan data are widely used in dental computer-aided design systems. Registration is essential if they are used in software systems. Existing automatic registration methods are either time-consuming or rough, and interactive registration methods are experience-dependent and tedious because of a great deal of purely manual interactions. For overcoming these disadvantages, a two-stage registration method is proposed. In the rough registration stage, the rough translation and rotation matrices are obtained by applying unit quaternion based method on the points interactively selected from the two types of data. In the precise registration stage, the stridden sampling is used to reduce computational complexity and the proposed registration algorithm with scale transformation is used for precise registration. The proposed method offers a good trade-off between precision and time cost. The experimental results demonstrate that the proposed method provides faster convergence and smaller registration errors than existing methods.


2021 ◽  
Vol 13 (18) ◽  
pp. 3674
Author(s):  
Guangqi Xie ◽  
Mi Wang ◽  
Zhiqi Zhang ◽  
Shao Xiang ◽  
Luxiao He

This paper presents a near real-time automatic sub-pixel registration method of high-resolution panchromatic (PAN) and multispectral (MS) images using a graphics processing unit (GPU). In the first step, the method uses differential geo-registration to enable accurate geographic registration of PAN and MS images. Differential geo-registration normalizes PAN and MS images to the same direction and scale. There are also some residual misalignments due to the geometrical configuration of the acquisition instruments. These residual misalignments mean the PAN and MS images still have deviations after differential geo-registration. The second step is to use differential rectification with tiny facet primitive to eliminate possible residual misalignments. Differential rectification corrects the relative internal geometric distortion between PAN and MS images. The computational burden of these two steps is large, and traditional central processing unit (CPU) processing takes a long time. Due to the natural parallelism of the differential methods, these two steps are very suitable for mapping to a GPU for processing, to achieve near real-time processing while ensuring processing accuracy. This paper used GaoFen-6, GaoFen-7, ZiYuan3-02 and SuperView-1 satellite data to conduct an experiment. The experiment showed that our method’s processing accuracy is within 0.5 pixels. The automatic processing time of this method is about 2.5 s for 1 GB output data in the NVIDIA GeForce RTX 2080Ti, which can meet the near real-time processing requirements for most satellites. The method in this paper can quickly achieve high-precision registration of PAN and MS images. It is suitable for different scenes and different sensors. It is extremely robust to registration errors between PAN and MS.


2021 ◽  
Author(s):  
Zhexi He ◽  
Xian Lun Zhu ◽  
Tat Ming Danny Chan ◽  
Chi Yan Tom Cheung ◽  
Ho-Keung Ng ◽  
...  

Abstract PurposeTo evaluate the diagnostic accuracy of frameless stereotactic brain biopsy and review the era for improvement.MethodsThis is a prospectively collected cohort study from 2007 to 2020. We reviewed patients who received frameless stereotactic brain biopsy in Prince of Wales Hospital and evaluated the diagnostic accuracy of the frameless stereotactic brain biopsy procedures. The biopsy result was classified into conclusive, inconclusive or negative, based on the pathological, radiological and clinical diagnosis concordance. For inconclusive or negative results, we further evaluated the pre-operative planning and post-operative imaging to review if further improvement could be made. The complication rate of symptomatic hemorrhage and mortality rate was also analyzed.ResultsThere were 106 patients with 109 biopsy procedures performed from 2007 to 2020. The conclusive diagnosis was reached in 103 (94.5%) procedures. The inconclusive diagnosis was noted in four (3.7%) procedures and negative diagnosis was yielded in two (1.9%) procedures. Symptomatic hemorrhage was noted in one patient (0.9%). There was no mortality case (0.0%) in our case series. The registration errors occurred in three cases (2.8%), sampling of the non-representative part of the lesion occurred in two cases (1.8%), and one biopsy (0.9%) for lymphoma was negative after the commencement of steroids. Systemic review showed that the diagnostic accuracy under the structurally defined diagnosis criteria was comparable with published literatures in recent ten years.ConclusionThe stereotactic biopsy is a safe procedure with high diagnostic accuracy only if meticulous pre-operative planning and careful intra-operative registration is performed. The common pitfalls precluding a conclusive diagnosis are errors during registration and non-representative biopsy sites.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mahsa Dadar ◽  
Ana L. Manera ◽  
Vladimir S. Fonov ◽  
Simon Ducharme ◽  
D. Louis Collins

AbstractStandard templates are widely used in human neuroimaging processing pipelines to facilitate group-level analyses and comparisons across subjects/populations. MNI-ICBM152 template is the most commonly used standard template, representing an average of 152 healthy young adult brains. However, in patients with neurodegenerative diseases such as frontotemporal dementia (FTD), high atrophy levels lead to significant differences between individuals’ brain shapes and MNI-ICBM152 template. Such differences might inevitably lead to registration errors or subtle biases in downstream analyses and results. Disease-specific templates are therefore desirable to reflect the anatomical characteristics of the populations of interest and reduce potential registration errors. Here, we present MNI-FTD136, MNI-bvFTD70, MNI-svFTD36, and MNI-pnfaFTD30, four unbiased average templates of 136 FTD patients, 70 behavioural variant (bv), 36 semantic variant (sv), and 30 progressive nonfluent aphasia (pnfa) variant FTD patients and a corresponding age-matched template of 133 controls (MNI-CN133), along with probabilistic tissue maps for each template. Public availability of these templates will facilitate analyses of FTD cohorts and enable comparisons between different studies in an appropriate common standardized space.


Sign in / Sign up

Export Citation Format

Share Document