Formulation of temperature dependent effective Hartree potential incorporating quadratic over linear molecular DOFs-surface modes couplings and its effect on quantum dynamics of D2(v=0, j=0)/D2(v=0, j=2) on Cu(111) metal surface

2021 ◽  
pp. 111371
Author(s):  
Joy Dutta ◽  
Souvik Mandal ◽  
Satrajit Adhikari
2020 ◽  
Vol 221 ◽  
pp. 526-546 ◽  
Author(s):  
Yair Litman ◽  
Jörg Behler ◽  
Mariana Rossi

Approximate quantum dynamics succeed in predicting a temperature-dependent blue-shift of the high-frequency stretch bands that arise from vibrational coupling between low-frequency thermally activated modes and high-frequency quantized ones. Classical nuclei molecular dynamics fail and instead predict a red-shift.


2017 ◽  
Vol 204 ◽  
pp. 53-67 ◽  
Author(s):  
Sabrina Engel ◽  
Daniel Spitzer ◽  
Leona Lucas Rodrigues ◽  
Eva-Corinna Fritz ◽  
David Straßburger ◽  
...  

We report the sequential growth of supramolecular copolymers on gold surfaces, using oppositely charged dendritic peptide amphiphiles. By including water-solubilising thermoresponsive chains in the monomer design, we observed non-linear effects in the temperature-dependent sequential growth. The step-wise copolymerisation process is characterised using temperature dependent SPR and QCM-D measurements. At higher temperatures, dehydration of peripheral oligoethylene glycol chains supports copolymer growth due to more favourable comonomer interactions. Both monomers incorporate methionine amino acids but remarkably, desorption of the copolymers via competing sulphur gold interactions with the initial monomer layer is not observed. The surface-confined supramolecular copolymers remain kinetically trapped on the metal surface at near neutral pH and form viscoelastic films with a tuneable thickness.


Author(s):  
L.E. Murr ◽  
V. Annamalai

Georgius Agricola in 1556 in his classical book, “De Re Metallica”, mentioned a strange water drawn from a mine shaft near Schmölnitz in Hungary that eroded iron and turned it into copper. This precipitation (or cementation) of copper on iron was employed as a commercial technique for producing copper at the Rio Tinto Mines in Spain in the 16th Century, and it continues today to account for as much as 15 percent of the copper produced by several U.S. copper companies.In addition to the Cu/Fe system, many other similar heterogeneous, electrochemical reactions can occur where ions from solution are reduced to metal on a more electropositive metal surface. In the case of copper precipitation from solution, aluminum is also an interesting system because of economic, environmental (ecological) and energy considerations. In studies of copper cementation on aluminum as an alternative to the historical Cu/Fe system, it was noticed that the two systems (Cu/Fe and Cu/Al) were kinetically very different, and that this difference was due in large part to differences in the structure of the residual, cement-copper deposit.


Author(s):  
T.E. Pratt ◽  
R.W. Vook

(111) oriented thin monocrystalline Ni films have been prepared by vacuum evaporation and examined by transmission electron microscopy and electron diffraction. In high vacuum, at room temperature, a layer of NaCl was first evaporated onto a freshly air-cleaved muscovite substrate clamped to a copper block with attached heater and thermocouple. Then, at various substrate temperatures, with other parameters held within a narrow range, Ni was evaporated from a tungsten filament. It had been shown previously that similar procedures would yield monocrystalline films of CU, Ag, and Au.For the films examined with respect to temperature dependent effects, typical deposition parameters were: Ni film thickness, 500-800 A; Ni deposition rate, 10 A/sec.; residual pressure, 10-6 torr; NaCl film thickness, 250 A; and NaCl deposition rate, 10 A/sec. Some additional evaporations involved higher deposition rates and lower film thicknesses.Monocrystalline films were obtained with substrate temperatures above 500° C. Below 450° C, the films were polycrystalline with a strong (111) preferred orientation.


Author(s):  
Daniel UGARTE

Small particles exhibit chemical and physical behaviors substantially different from bulk materials. This is due to the fact that boundary conditions can induce specific constraints on the observed properties. As an example, energy loss experiments carried out in an analytical electron microscope, constitute a powerful technique to investigate the excitation of collective surface modes (plasmons), which are modified in a limited size medium. In this work a STEM VG HB501 has been used to study the low energy loss spectrum (1-40 eV) of silicon spherical particles [1], and the spatial localization of the different modes has been analyzed through digitally acquired energy filtered images. This material and its oxides have been extensively studied and are very well characterized, because of their applications in microelectronics. These particles are thus ideal objects to test the validity of theories developed up to now.Typical EELS spectra in the low loss region are shown in fig. 2 and energy filtered images for the main spectral features in fig. 3.


Author(s):  
A. Elgsaeter ◽  
T. Espevik ◽  
G. Kopstad

The importance of a high rate of temperature decrease (“rapid freezing”) when freezing specimens for freeze-etching has long been recognized1. The two basic methods for achieving rapid freezing are: 1) dropping the specimen onto a metal surface at low temperature, 2) bringing the specimen instantaneously into thermal contact with a liquid at low temperature and subsequently maintaining a high relative velocity between the liquid and the specimen. Over the last couple of years the first method has received strong renewed interest, particularily as the result of a series of important studies by Heuser and coworkers 2,3. In this paper we will compare these two freezing methods theoretically and experimentally.


Sign in / Sign up

Export Citation Format

Share Document